Do you want to publish a course? Click here

Quantum Computation by Communication

73   0   0.0 ( 0 )
 Added by William Munro
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new approach to scalable quantum computing--a ``qubus computer--which realises qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be ``static matter qubits or ``flying optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no requirement for direct interaction between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve measurement of the bus mode, or by schemes where the bus disentangles automatically and no measurement is needed. In effect, the approach integrates together qubit degrees of freedom for computation with quantum continuous variables for communication and interaction.



rate research

Read More

We point out that realization of quantum communication protocols in programmable quantum computers provides a deep benchmark for capabilities of real quantum hardware. Particularly, it is prospective to focus on measurements of entropy-based characteristics of the performance and to explore whether a quantum regime is preserved. We perform proof-of-principle implementations of superdense coding and quantum key distribution BB84 using 5- and 16-qubit superconducting quantum processors of IBM Quantum Experience. We focus on the ability of these quantum machines to provide an efficient transfer of information between distant parts of the processors by placing Alice and Bob at different qubits of the devices. We also examine the ability of quantum devices to serve as quantum memory and to store entangled states used in quantum communication. Another issue we address is an error mitigation. Although it is at odds with benchmarking, this problem is nevertheless of importance in a general context of quantum computation with noisy quantum devices. We perform such a mitigation and noticeably improve some results.
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the coupling to the background gate charges, as well as the effect of dynamical noise. We also analyze the readout process, and its backaction on the state transfer.
Distributed quantum computation requires quantum operations that act over a distance on error-correction encoded states of logical qubits, such as the transfer of qubits via teleportation. We evaluate the performance of several quantum error correction codes, and find that teleportation failure rates of one percent or more are tolerable when two levels of the [[23,1,7]] code are used. We present an analysis of performing quantum error correction (QEC) on QEC-encoded states that span two quantum computers, including the creation of distributed logical zeroes. The transfer of the individual qubits of a logical state may be multiplexed in time or space, moving serially across a single link, or in parallel across multiple links. We show that the performance and reliability penalty for using serial links is small for a broad range of physical parameters, making serial links preferable for a large, distributed quantum multicomputer when engineering difficulties are considered. Such a multicomputer will be able to factor a 1,024-bit number using Shors algorithm with a high probability of success.
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of the quantum Rabi model allow us to build an effective three-level {Lambda}-structured artificial atom for quantum computation. The proposed physical implementation includes two gradiometric flux qubits and two microwave resonators where single-qubit gates are realized by a two-tone driving on one physical qubit, and a two-qubit gate is achieved with a time-dependent coupling between the field quadratures of both resonators. Our work paves the way for scalable holonomic quantum computation in ultrastrongly coupled systems.
The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا