Do you want to publish a course? Click here

Entanglement of Trapped-Ion Clock States

88   0   0.0 ( 0 )
 Added by Paul C. Haljan
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A M{o}lmer-S{o}rensen entangling gate is realized for pairs of trapped $^{111}$Cd$^+$ ions using magnetic-field insensitive clock states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.

rate research

Read More

High-fidelity two-qubit entangling gates play an important role in many quantum information processing tasks and are a necessary building block for constructing a universal quantum computer. Such high-fidelity gates have been demonstrated on trapped-ion qubits, however, control errors and noise in gate parameters may still lead to reduced fidelity. Here we propose and demonstrate a general family of two-qubit entangling gates which are robust to different sources of noise and control errors. These gates generalize the celebrated M{o}lmer-S{o}rensen gate by using multi-tone drives. We experimentally implemented several of the proposed gates on $^{88}text{Sr}^{+}$ ions trapped in a linear Paul trap, and verified their resilience.
We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation and eliminates the need for auxiliary ions. The entangled singlet state is generated in $sim$7 ms with a fidelity of 0.949(4). The dominant source of infidelity is photon scattering. We discuss this error source and strategies for its mitigation.
Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a non-perturbative framework based on a quantum channel description of the scattering process, and use it to derive a master equation which leads to a simple analytic expression for the collisional frequency shift. As a demonstration of our method, we calculate the frequency shift of the Sr$^+$ optical atomic clock transition due to elastic collisions with helium.
The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when using a quantum computer to simulate many-body systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: In addition to all correlation functions, the entanglement structure of an infinite system -- specifically the half-chain entanglement spectrum -- is conveniently encoded within a small register of bond qubits and can be extracted with relative ease. Using a trapped-ion QCCD quantum computer equipped with selective mid-circuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.
113 - K. Lake , S. Weidt , J. Randall 2014
Applying a magnetic field gradient to a trapped ion allows long-wavelength microwave radiation to produce a mechanical force on the ions motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb{171}~ion, and use it to produce entanglement between the spin and motional state, an essential step towards using such a field gradient to implement multi-qubit operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا