Do you want to publish a course? Click here

The collisional frequency shift of a trapped-ion optical clock

129   0   0.0 ( 0 )
 Added by Amar Vutha
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a non-perturbative framework based on a quantum channel description of the scattering process, and use it to derive a master equation which leads to a simple analytic expression for the collisional frequency shift. As a demonstration of our method, we calculate the frequency shift of the Sr$^+$ optical atomic clock transition due to elastic collisions with helium.



rate research

Read More

Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution to the total systematic uncertainty budget of trapped-ion clocks. Using a non-perturbative analytic framework that was developed for this problem, we estimate the frequency shift in Al$^+$ ion clocks due to collisions with helium and hydrogen. Our calculations significantly improve the uncertainties in the collisional shift coefficients, and show that the collisional frequency shifts for Al$^+$ are zero to within uncertainty.
We measure the dynamic differential scalar polarizabilities at 10.6 $mu$m for two candidate clock transitions in $^{176}mathrm{Lu}^+$. The fractional black body radiation (BBR) shifts at 300 K for the $^1S_0 leftrightarrow {^3D_1}$ and $^1S_0 leftrightarrow {^3D_2}$ transitions are evaluated to be $-1.36,(9) times 10^{-18}$ and $2.70 ,(21) times10^{-17}$, respectively. The former is the lowest of any established optical atomic clock.
With the uncertainty of the optical clocks improving to the order of 10-18, the probe light used to detect the clock transition has demonstrated nonnegligible Stark shift, provoking to precisely evaluate this shift. Here, we demonstrate a frequency modulation technique to realize a large measurement lever arm of the probe Stark shift with no cost of the measurement accuracy of the interleaved stabilization method. This frequency-modulated spectrum is theoretical described and experimental verified. The probe Stark shift coefficient of the 87Sr optical lattice clock is experimentally determined as -(45.97+/-3.51) Hz/(W/cm2) using this frequency modulation spectroscopy.
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driving fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
Collisions with background gas particles can shift the resonance frequencies of atoms in atomic clocks. The internal quantum states of atoms can also become entangled with their motional states due to the recoil imparted by a collision, which leads to a further shift of the clock frequency through the relativistic Doppler shift. It can be complicated to evaluate the Doppler and collisional frequency shifts for clock atoms in such entangled states, but estimates of these shifts are essential in order to improve the accuracy of optical atomic clocks. We present a formalism that describes collisions and relativistic Doppler shifts in a unified manner, and can therefore be used to accurately estimate collisional frequency shifts in trapped-atom clocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا