Do you want to publish a course? Click here

Control of decoherence in the generation of photon pairs from atomic ensembles

56   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an investigation to establish the physical mechanisms responsible for decoherence in the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al for long distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental techniques necessary to properly control the process. We develop a theory to model in detail the decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of the ground state by the trap magnetic field is identified as the principal mechanism for decoherence. In conjunction with our theoretical analysis, we report a series of measurements to characterize and control the coherence time in our experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the ground state energy distribution of the ensemble. These spectroscopic measurements allow us to switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of photons generated by the ensemble as a function of the storage time of the single collective atomic excitation. We report coherence times longer than 10 microseconds, corresponding to an increase of two orders of magnitude compared to previous results in cold ensembles. The coherence time is now two orders of magnitude longer than the duration of the excitation pulses. The comparison between these experimental results and the theory shows good agreement. Finally, we employ our theory to devise ways to improve the experiment by optical pumping to specific initial states.



rate research

Read More

We consider an ensemble of atoms with $Lambda$-type level structure trapped in a single-mode cavity, and propose a geometric scheme of coherent manipulation of quantum states on the subspace of zero-energy states within the quantum Zeno subspace of the system. We find that the particular subspace inherits the decoherence-free nature of the quantum Zeno subspace and features a symmetry-protected degeneracy, fulfilling all the conditions for a universal scheme of arbitrary unitary operations on it.
We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures ranging from 350 to 450 K, corresponding to average atomic spacings between $0.7 lambda$ and $0.1 lambda$. We develop a theoretical model treating the atomic ensemble as coherent, interacting, radiating dipoles. We show that the two-time second-order correlation function of a thermal ensemble can be described by an average of randomly positioned atomic pairs. Our model illustrates good agreement with the experimental results. Furthermore, we show how fine-tuning of the experimental parameters may make it possible to explore several photon statistics regimes.
We collect the fluorescence from two trapped atomic ions, and measure quantum interference between photons emitted from the ions. The interference of two photons is a crucial component of schemes to entangle atomic qubits based on a photonic coupling. The ability to preserve the generated entanglement and to repeat the experiment with the same ions is necessary to implement entangling quantum gates between atomic qubits, and allows the implementation of protocols to efficiently scale to larger numbers of atomic qubits.
We illustrate the existence of single-excitation bound states for propagating photons interacting with $N$ two-level atoms. These bound states can be calculated from an effective spin model, and their existence relies on dissipation in the system. The appearance of these bound states is in a one-to-one correspondence with zeros in the single-photon transmission and with divergent bunching in the second-order photon-photon correlation function. We also formulate a dissipative version of Levinsons theorem for this system by looking at the relation between the number of bound states and the winding number of the transmission phases. This theorem allows a direct experimental measurement of the number of bound states using the measured transmission phases.
We study numerically the slow (subradiant) decay of the fluorescence of motionless atoms after a weak pulsed excitation. We show that, in the linear-optics regime and for an excitation detuned by several natural linewidths, the slow decay rate can be dominated by close pairs of atoms (dimers) forming superradiant and subradiant states. However, for a large-enough resonant optical depth and at later time, the dynamics is dominated by collective many-body effects. In this regime, we study the polarization and the spectrum of the emitted light, as well as the spatial distribution of excitation inside the sample, as a function of time during the decay dynamics. The behavior of these observables is consistent with what would be expected for radiation trapping of nearly resonant light. This finding sheds light on subradiance in dilute samples by providing an interpretation based on the light behavior of the system (multiple scattering) which is complementary to the more commonly used picture of the collective atomic Dicke state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا