No Arabic abstract
We study numerically the slow (subradiant) decay of the fluorescence of motionless atoms after a weak pulsed excitation. We show that, in the linear-optics regime and for an excitation detuned by several natural linewidths, the slow decay rate can be dominated by close pairs of atoms (dimers) forming superradiant and subradiant states. However, for a large-enough resonant optical depth and at later time, the dynamics is dominated by collective many-body effects. In this regime, we study the polarization and the spectrum of the emitted light, as well as the spatial distribution of excitation inside the sample, as a function of time during the decay dynamics. The behavior of these observables is consistent with what would be expected for radiation trapping of nearly resonant light. This finding sheds light on subradiance in dilute samples by providing an interpretation based on the light behavior of the system (multiple scattering) which is complementary to the more commonly used picture of the collective atomic Dicke state.
Entanglement measures quantify nonclassical correlations present in a quantum system, but can be extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider broad families of entanglement criteria that are based on variances of arbitrary operators and analytically derive the lower bounds these criteria provide for two relevant entanglement measures: the best separable approximation (BSA) and the generalized robustness (GR). This yields a practical method for quantifying entanglement in realistic experimental situations, in particular, when only few measurements of simple observables are available. As a concrete application of this method, we quantify bipartite and multipartite entanglement in spin-squeezed Bose-Einstein condensates of $sim 500$ atoms, by lower bounding the BSA and the GR only from measurements of first and second moments of the collective spin operator.
Collective effects in atom-light interaction is of great importance for cold-atom-based quantum devices or fundamental studies on light transport in complex media. Here we discuss and compare three different approaches to light scattering by dilute cold atomic ensembles. The first approach is a coupled-dipole model, valid at low intensity, which includes cooperative effects, like superradiance, and other coherent properties. The second one is a random-walk model, which includes classical multiple scattering and neglects coherence effects. The third approach is a crude approximation only based on the attenuation of the excitation beam inside the medium, the so-called shadow effect. We show that in the case of a low-density sample, the random walk approach is an excellent approximation for steady-state light scattering, and that the shadow effect surprisingly gives rather accurate results at least up to optical depths on the order of 15.
We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures ranging from 350 to 450 K, corresponding to average atomic spacings between $0.7 lambda$ and $0.1 lambda$. We develop a theoretical model treating the atomic ensemble as coherent, interacting, radiating dipoles. We show that the two-time second-order correlation function of a thermal ensemble can be described by an average of randomly positioned atomic pairs. Our model illustrates good agreement with the experimental results. Furthermore, we show how fine-tuning of the experimental parameters may make it possible to explore several photon statistics regimes.
We consider an ensemble of atoms with $Lambda$-type level structure trapped in a single-mode cavity, and propose a geometric scheme of coherent manipulation of quantum states on the subspace of zero-energy states within the quantum Zeno subspace of the system. We find that the particular subspace inherits the decoherence-free nature of the quantum Zeno subspace and features a symmetry-protected degeneracy, fulfilling all the conditions for a universal scheme of arbitrary unitary operations on it.
We review methods for coherently controlling Rydberg quantum states of atomic ensembles using Adiabatic Rapid Passage and Stimulated Raman Adiabatic Passage. These methods are commonly used for population inversion in simple two-level and three-level systems. We show that adiabatic techniques allow us to control population and phase dynamics of complex entangled states of mesoscopic atomic ensembles for quantum information processing with Rydberg atoms. We also propose several schemes of single-qubit and two-qubit gates based on adiabatic passage, Rydberg blockade and F{o}rster resonances in Rydberg atoms.