A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interferometry on the attosecond time scale. The number of visible fringes, for example, indicates that the slits are extended over about 500as.
We provide support for the claim that momentum is conserved for individual events in the electron double slit experiment. The natural consequence is that a physical mechanism is responsible for this momentum exchange, but that even if the fundamental mechanism is known for electron crystal diffraction and the Kapitza-Dirac effect, it is unknown for electron diffraction from nano-fabricated double slits. Work towards a proposed explanation in terms of particle trajectories affected by a vacuum field is discussed. The contentious use of trajectories is discussed within the context of oil droplet analogues of double slit diffraction.
We present a fully local treatment of the double slit experiment in the formalism of quantum field theory. Our exposition is predominantly pedagogical in nature and exemplifies the fact that there is an entirely local description of the quantum double slit interference that does not suffer from any supposed paradoxes usually related to the wave-particle duality. The wave-particle duality indeed vanishes in favour of the field picture in which particles should not be regarded as the primary elements of reality and only represent excitations of some specific field configurations. Our treatment is general and can be applied to any other phenomenon involving quantum interference of any bosonic or fermionic field, both spatially and temporally. For completeness, we present the full treatment of single qubit interference in the same spirit.
A which-way measurement in Youngs double-slit will destroy the interference pattern. Bohr claimed this complementarity between wave- and particle behaviour is enforced by Heisenbergs uncertainty principle: distinguishing two positions a distance s apart transfers a random momentum q sim hbar/s to the particle. This claim has been subject to debate: Scully et al. asserted that in some situations interference can be destroyed with no momentum transfer, while Storey et al. asserted that Bohrs stance is always valid. We address this issue using the experimental technique of weak measurement. We measure a distribution for q that spreads well beyond [-hbar/s, hbar/s], but nevertheless has a variance consistent with zero. This weakvalued momentum-transfer distribution P_{wv}(q) thus reflects both sides of the debate.
In this article the propagation of pointlike event probabilities in space is considered. Double-Slit experiment is described in detail. New interpretation of Quantum Theory is formulated.
We explore a possible connection between non-commutative space and the quantum-to-classical transition by computing the outcome of a double slit experiment in the non-commutative plane. We find that the interference term undergoes a Gaussian suppression at high momentum, which translates into a mass dependent suppression for composite objects and the emergence of classical behaviour at macroscopic scales.