No Arabic abstract
We present a fully local treatment of the double slit experiment in the formalism of quantum field theory. Our exposition is predominantly pedagogical in nature and exemplifies the fact that there is an entirely local description of the quantum double slit interference that does not suffer from any supposed paradoxes usually related to the wave-particle duality. The wave-particle duality indeed vanishes in favour of the field picture in which particles should not be regarded as the primary elements of reality and only represent excitations of some specific field configurations. Our treatment is general and can be applied to any other phenomenon involving quantum interference of any bosonic or fermionic field, both spatially and temporally. For completeness, we present the full treatment of single qubit interference in the same spirit.
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interferometry on the attosecond time scale. The number of visible fringes, for example, indicates that the slits are extended over about 500as.
We provide support for the claim that momentum is conserved for individual events in the electron double slit experiment. The natural consequence is that a physical mechanism is responsible for this momentum exchange, but that even if the fundamental mechanism is known for electron crystal diffraction and the Kapitza-Dirac effect, it is unknown for electron diffraction from nano-fabricated double slits. Work towards a proposed explanation in terms of particle trajectories affected by a vacuum field is discussed. The contentious use of trajectories is discussed within the context of oil droplet analogues of double slit diffraction.
Unperformed measurements have no results. Unobserved results can affect future measurements.
We describe the quantum interference of a single photon in the Mach-Zehnder interferometer using the Heisenberg picture. Our purpose is to show that the description is local just like in the case of the classical electromagnetic field, the only difference being that the electric and the magnetic fields are, in the quantum case, operators (quantum observables). We then consider a single-electron Mach-Zehnder interferometer and explain what the appropriate Heisenberg picture treatment is in this case. Interestingly, the parity superselection rule forces us to treat the electron differently to the photon. A model using only local quantum observables of different fermionic modes, such as the current operator, is nevertheless still viable to describe phase acquisition. We discuss how to extend this local analysis to coupled fermionic and bosonic fields within the same local formalism of quantum electrodynamics as formulated in the Heisenberg picture.
We explore a possible connection between non-commutative space and the quantum-to-classical transition by computing the outcome of a double slit experiment in the non-commutative plane. We find that the interference term undergoes a Gaussian suppression at high momentum, which translates into a mass dependent suppression for composite objects and the emergence of classical behaviour at macroscopic scales.