Do you want to publish a course? Click here

Threshold Error Penalty for Fault Tolerant Computation with Nearest Neighbour Communication

82   0   0.0 ( 0 )
 Added by Thomas Szkopek
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The error threshold for fault tolerant quantum computation with concatenated encoding of qubits is penalized by internal communication overhead. Many quantum computation proposals rely on nearest-neighbour communication, which requires excess gate operations. For a qubit stripe with a width of L+1 physical qubits implementing L levels of concatenation, we find that the error threshold of 2.1x10^-5 without any communication burden is reduced to 1.2x10^-7 when gate errors are the dominant source of error. This ~175X penalty in error threshold translates to an ~13X penalty in the amplitude and timing of gate operation control pulses.



rate research

Read More

To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However,it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code.Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large scale cluster states for the topologically protected measurement based quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large scale quantum computation.
We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolera
184 - Rui Chao , Ben W. Reichardt 2017
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with fault-tolerance schemes with multiple encoded qubits. The 15-qubit Hamming code protects seven encoded qubits to distance three. We give fault-tolerant procedures for applying arbitrary Clifford operations on these encoded qubits, using only two extra qubits, 17 total. In particular, individual encoded qubits within the code block can be targeted. Fault-tolerant universal computation is possible with four extra qubits, 19 total. The procedures could enable testing more sophisticated protected circuits in small-scale quantum devices. Our main technique is to use gadgets to protect gates against correlated faults. We also take advantage of special code symmetries, and use pieceable fault tolerance.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا