We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare `tetrahedral qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting, which will outperform classical fingerprinting even with arbitrary amounts of shared randomness.
Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.
Quantum fingerprinting reduces communication complexity of determination whether two $n$-bit long inputs are equal or different in the simultaneous message passing model. Here we quantify the advantage of quantum fingerprinting over classical protocols when communication is carried out using optical signals with limited power and unrestricted bandwidth propagating over additive white Gaussian noise (AWGN) channels with power spectral density (PSD) much less than one photon per unit time and unit bandwidth. We identify a noise parameter whose order of magnitude separates near-noiseless quantum fingerprinting, with signal duration effectively independent of $n$, from a regime where the impact of AWGN is significant. In the latter case the signal duration is found to scale as $O(sqrt{n})$, analogously to classical fingerprinting. However, the dependence of the signal duration on the AWGN PSD is starkly distinct, leading to quantum advantage in the form of a reduced multiplicative factor in $O(sqrt{n})$ scaling.
We address the dephasing dynamics of a qubit as an effective process to estimate the temperature of its environment. Our scheme is inherently quantum, since it exploits the sensitivity of the qubit to decoherence, and does not require thermalization with the system under investigation. We optimize the quantum Fisher information with respect to the interaction time and the temperature in the case of Ohmic-like environments. We also find explicitly the qubit measurement achieving the quantum Cramer- Rao bound to precision. Our results show that the conditions for optimal estimation originate from a non-trivial interplay between the dephasing dynamics and the Ohmic structure of the environment. In general, optimal estimation is achieved neither when the qubit approaches the stationary state, nor for full dephasing.
A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described by a semigroup of single qubit quantum channels ${T_t}$ specified by a generator $mathcal{L}$. This algorithm requires only $mathcal{O}big((||mathcal{L}||_{(1rightarrow 1)} t)^{3/2}/epsilon^{1/2} big)$ single qubit and CNOT gates and approximates the channel $T_t = e^{tmathcal{L}}$ up to chosen accuracy $epsilon$. Inspired by developments in Hamiltonian simulation, a decomposition and recombination technique is utilised which allows for the exploitation of recently developed methods for the approximation of arbitrary single-qubit channels. In particular, as a result of these methods the algorithm requires only a single ancilla qubit, the minimal possible dilation for a non-unitary single-qubit quantum channel.
In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participants preparation of the qubit state and the subsequent participants choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocols security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.