Do you want to publish a course? Click here

Simulation of single-qubit open quantum systems

178   0   0.0 ( 0 )
 Added by Ryan Sweke Mr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described by a semigroup of single qubit quantum channels ${T_t}$ specified by a generator $mathcal{L}$. This algorithm requires only $mathcal{O}big((||mathcal{L}||_{(1rightarrow 1)} t)^{3/2}/epsilon^{1/2} big)$ single qubit and CNOT gates and approximates the channel $T_t = e^{tmathcal{L}}$ up to chosen accuracy $epsilon$. Inspired by developments in Hamiltonian simulation, a decomposition and recombination technique is utilised which allows for the exploitation of recently developed methods for the approximation of arbitrary single-qubit channels. In particular, as a result of these methods the algorithm requires only a single ancilla qubit, the minimal possible dilation for a non-unitary single-qubit quantum channel.



rate research

Read More

Quasiprobability distributions (QDs) in open quantum systems are investigated for $SU(2)$, spin like systems, having relevance to quantum optics and information. In this work, effect of both quantum non-demolition (QND) and dissipative open quantum systems, on the evolution of a number of spin QDs are investigated. Specifically, compact analytic expressions for the $W$, $P$, $Q$, and $F$ functions are obtained for some interesting single, two and three qubit states, undergoing general open system evolutions. Further, corresponding QDs are reported for an N qubit Dicke model and a spin-1 system. The existence of nonclassical characteristics are observed in all the systems investigated here. The study leads to a clear understanding of quantum to classical transition in a host of realistic physical scenarios. Variation of the amount of nonclassicality observed in the quantum systems, studied here,are also investigated using nonclassical volume.
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body systems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on near-term quantum hardware. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using an adaptation of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantums hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work shows that the dynamics of open quantum systems can be efficiently simulated on near-term quantum hardware.
Electron transport in realistic physical and chemical systems often involves the non-trivial exchange of energy with a large environment, requiring the definition and treatment of open quantum systems. Because the time evolution of an open quantum system employs a non-unitary operator, the simulation of open quantum systems presents a challenge for universal quantum computers constructed from only unitary operators or gates. Here we present a general algorithm for implementing the action of any non-unitary operator on an arbitrary state on a quantum device. We show that any quantum operator can be exactly decomposed as a linear combination of at most four unitary operators. We demonstrate this method on a two-level system in both zero and finite temperature amplitude damping channels. The results are in agreement with classical calculations, showing promise in simulating non-unitary operations on intermediate-term and future quantum devices.
Classical simulations of quantum circuits are limited in both space and time when the qubit count is above 50, the realm where quantum supremacy reigns. However, recently, for the low depth circuit with more than 50 qubits, there are several methods of simulation proposed by teams at Google and IBM. Here, we present a scheme of simulation which can extract a large amount of measurement outcomes within a short time, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56- and 42-qubit circuits on a single PC. We also estimate that a 72-qubit circuit of depth 23 can be simulated in about 16 h on a supercomputer identical to that used by the IBM team. Moreover, the simulation processes are exceedingly separable, hence parallelizable, involving just a few inter-process communications. Our work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا