No Arabic abstract
We explore in detail the possibility of intracavity generation of continuous-variable (CV) entangled states of light beams under mode phase-locked conditions. We show that such quantum states can be generated in self-phase locked nondegenerate optical parametric oscillator (NOPO) based on a type-II phase-matched down-conversion combined with linear mixer of two orthogonally polarized modes of the subharmonics in a cavity. A quantum theory of this device, recently realized in the experiment, is developed for both sub-threshold and above-threshold operational regimes. We show that the system providing high level phase coherence between two generated modes, unlike to the ordinary NOPO, also exhibits different types of quantum correlations between photon numbers and phases of these modes. We quantify the CV entanglement as two-mode squeezing and show that the maximal degree of the integral two-mode squeezing(that is 50% relative to the level of vacuum fluctuations) is achieved at the pump field intensity close to the generation threshold of self-phase locked NOPO, provided that the constant of linear coupling between the two polarizations is much less than the mode detunings. The peculiarities of CV entanglement for the case of unitary, non-dissipative dynamics of the system under consideration is also cleared up.
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of EPR paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
Transferring quantum information between distant nodes of a network is a key capability. This transfer can be realized via remote state preparation where two parties share entanglement and the sender has full knowledge of the state to be communicated. Here we demonstrate such a process between heterogeneous nodes functioning with different information encodings, i.e., particle-like discrete-variable optical qubits and wave-like continuous-variable ones. Using hybrid entanglement of light as a shared resource, we prepare arbitrary coherent-state superpositions controlled by measurements on the distant discrete-encoded node. The remotely prepared states are fully characterized by quantum state tomography and negative Wigner functions are obtained. This work demonstrates a novel capability to bridge discrete- and continuous-variable platforms.
We study the `local entanglement remaining after filtering operations corresponding to imperfect measurements performed by one or both parties, such that the parties can only determine whether or not the system is located in some region of space. The local entanglement in pure states of general bipartite multidimensional continuous-variable systems can be completely determined through simple expressions. We apply our approach to semiclassical WKB systems, multi-dimensional harmonic oscillators, and a hydrogen atom as three examples.
We report the experimental transformation of quadrature entanglement between two optical beams into continuous variable polarization entanglement. We extend the inseparability criterion proposed by Duan, et al. [Duan00] to polarization states and use it to quantify the entanglement between the three Stokes operators of the beams. We propose an extension to this scheme utilizing two quadrature entangled pairs for which all three Stokes operators between a pair of beams are entangled.
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber.