We report the experimental transformation of quadrature entanglement between two optical beams into continuous variable polarization entanglement. We extend the inseparability criterion proposed by Duan, et al. [Duan00] to polarization states and use it to quantify the entanglement between the three Stokes operators of the beams. We propose an extension to this scheme utilizing two quadrature entangled pairs for which all three Stokes operators between a pair of beams are entangled.
We generate and characterise continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan {it et al.}cite{Duan00} and the Einstein-Podolsky-Rosen paradox criteria proposed by Reid and Drummondcite{Reid88}, to Stokes operators; and use them to charactise the entanglement. Our results for the Einstein-Podolsky-Rosen paradox criteria are visualised in terms of uncertainty balls on the Poincar{e} sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound $sqrt{3}$ times more stringent than for the quadrature entanglement.
We report the experimental demonstration of continuous variable cloning of phase conjugate coherent states as proposed by Cerf and Iblisdir (Phys. Rev. Lett. 87, 247903 (2001)). In contrast to the proposal of Cerf and Iblisdir, the cloning transformation is accomplished using only linear optical components, homodyne detection and feedforward. Three clones are succesfully produced with fidelities about 89%.
We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88] and inseparability [Duan00] criteria, with observed results of $Delta^{2} X_{x|y}^{+} Delta^{2} X_{x|y}^{-} = 0.58 pm 0.02$ and $sqrt{Delta^{2} X_{x pm y}^{+} Delta^{2} X_{x pm y}^{-}} = 0.44 pm 0.01$, respectively. Both results clearly beat the standard quantum limit of unity. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors that are inherently continuous A powerful method to suppress these effects is to use quantum error correction. Typically, quantum error correction is executed in discrete rounds where errors are digitized and detected by projective multi-qubit parity measurements. These stabilizer measurements are traditionally realized with entangling gates and projective measurement on ancillary qubits to complete a round of error correction. However, their gate structure makes them vulnerable to errors occurring at specific times in the code and errors on the ancilla qubits. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancilla qubits, and their associated errors. The continuous measurements are monitored by an FPGA controller that actively corrects errors as they are detected. Using this method, we achieve an average bit-flip detection efficiency of up to 91%. Furthermore, we use the protocol to increase the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.
The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols. Polarization entangled photon pairs are usually generated through spontaneous parametric down-conversion, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead.