Do you want to publish a course? Click here

Zero-Point cooling and low heating of trapped 111Cd+ ions

58   0   0.0 ( 0 )
 Added by Louis Deslauriers
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.



rate research

Read More

We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.
92 - D. A. Hite , K. S. McKay , 2021
For the past two and a half decades, anomalous heating of trapped ions from nearby electrode surfaces has continued to demonstrate unexpected results. Caused by electric-field noise, this heating of the ions motional modes remains an obstacle for scalable quantum computation with trapped ions. One of the anomalous features of this electric-field noise is the reported nonmonotonic behavior in the heating rate when a trap is incrementally cleaned by ion bombardment. Motivated by this result, the present work reports on a surface analysis of a sample ion-trap electrode treated similarly with incremental doses of Ar$^+$ ion bombardment. Kelvin probe force microscopy and x-ray photoelectron spectroscopy were used to investigate how the work functions on the electrode surface vary depending on the residual contaminant coverage between each treatment. It is shown that the as-fabricated Au electrode is covered with a hydrocarbon film that is modified after the first treatment, resulting in work functions and core-level binding energies that resemble that of atomic-like carbon on Au. The change in the spatial distributions of work functions as the coverage changes with each treatment is apparently related to the nonmonotonic heating-rate behavior previously reported.
104 - S. Ejtemaee , P. C. Haljan 2016
Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.
Electric-field noise due to surfaces disturbs the motion of nearby trapped ions, compromising the fidelity of gate operations that are the basis for quantum computing algorithms. We present a method that predicts the effect of dielectric materials on the ions motion. Such dielectrics are integral components of ion traps. Quantitative agreement is found between a model with no free parameters and measurements of a trapped ion in proximity to dielectric mirrors. We expect that this approach can be used to optimize the design of ion-trap-based quantum computers and network nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا