Do you want to publish a course? Click here

Quantum coherence: myth or fact?

89   0   0.0 ( 0 )
 Added by Kae Nemoto
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been argued that the inability to measure the absolute phase of an electromagnetic field prohibits the representation of a lasers output as a quantum optical coherent state. This argument has generally been considered technically correct but conceptually disturbing. Indeed, it would seem to place in question the very concept of the coherent state. Here we show that this argument fails to take into account a fundamental principle that not only re-admits the coherent state as legitimate, but formalizes a fundamental concept about model building in general, and in quantum mechanics in particular.



rate research

Read More

After almost 20 years of hunting, only about a dozen hot corinos, hot regions enriched in interstellar complex organic molecules (iCOMs), are known. Of them, many are binary systems with the two components showing drastically different molecular spectra. Two obvious questions arise. Why are hot corinos so difficult to find and why do their binary components seem chemically different? The answer to both questions could be a high dust opacity that would hide the molecular lines. To test this hypothesis, we observed methanol lines at centimeter wavelengths, where dust opacity is negligible, using the Very Large Array interferometer. We targeted the NGC 1333 IRAS 4A binary system, for which one of the two components, 4A1, has a spectrum deprived of iCOMs lines when observed at millimeter wavelengths, while the other component, 4A2, is very rich in iCOMs. We found that centimeter methanol lines are similarly bright toward 4A1 and 4A2. Their non-LTE analysis indicates gas density and temperature ($geq2times10^6$ cm$^{-3}$ and 100--190 K), methanol column density ($sim10^{19}$ cm$^{-2}$) and extent ($sim$35 au in radius) similar in 4A1 and 4A2, proving that both are hot corinos. Furthermore, the comparison with previous methanol line millimeter observations allows us to estimate the optical depth of the dust in front of 4A1 and 4A2, respectively. The obtained values explain the absence of iCOMs line emission toward 4A1 at millimeter wavelengths and indicate that the abundances toward 4A2 are underestimated by $sim$30%. Therefore, centimeter observations are crucial for the correct study of hot corinos, their census, and their molecular abundances.
Photon exchange due to nuclear bremsstrahlung during nuclear collisions can cause Coulomb excitation in the projectile and the target nuclei. The corresponding process originated in nuclear timescales can also be observed in atomic phenomenon experimentally if it delayed by at least with an attosecond or longer timescales. We have found that this happens due to a mechanism involving the Eisenbud-Wigner-Smith time delay process. We have estimated photoionization time delays in atomic collisions utilizing the nonrelativistic version of random phase approximation with exchange and Hartree-Fock methods. We present three representative processes in which we can observe the phenomena in attosecond timescales even though they originate from excitations in the zeptosecond timescales. Thus the work represents an investigation of parallels between two neighboring areas of physics. Furthermore the present work suggests new possibilities for atomic physics research near the Coulomb barrier energy, where the laser is replaced by nuclear bremsstrahlung.
We investigate the coherence of quantum channels using the Choi-Jamiol{}kowski isomorphism. The relation between the coherence and the purity of the channel respects a duality relation. It characterizes the allowed values of coherence when the channel has certain purity. This duality has been depicted via the Coherence-Purity (Co-Pu) diagrams. In particular, we study the quantum coherence of the unital and non-unital qubit channels and find out the allowed region of coherence for a fixed purity. We also study coherence of different incoherent channels, namely, incoherent operation (IO), strictly incoherent operation (SIO), physical incoherent operation (PIO) etc. Interestingly, we find that the allowed region for different incoherent operations maintain the relation $PIOsubset SIO subset IO$. In fact, we find that if PIOs are coherence preserving operations (CPO), its coherence is zero otherwise it has unit coherence and unit purity. Interestingly, different kinds of qubit channels can be distinguished using the Co-Pu diagram. The unital channels generally do not create coherence whereas some nonunital can. All coherence breaking channels are shown to have zero coherence, whereas, this is not usually true for entanglement breaking channels. It turns out that the coherence preserving qubit channels have unit coherence. Although the coherence of the Choi matrix of the incoherent channels might have finite values, its subsystem contains no coherence. This indicates that the incoherent channels can either be unital or nonunital under some conditions.
126 - Tarek A. Elsayed 2021
We report on the existence of quantum forces between nearby fragments of correlated matter that result due to the interference effects between the fragments. This effect explains the phenomenon of correlation-assisted tunneling and puts it in a broader context. The magnitude of the reported force depends on the amount of coherence between different locations; it attains a maximum value for fragments in a perfect superfluid state and disappears entirely when the fragments are in the Mott Insulator state. The force can also be explained in terms of the Bohmian quantum potential. We illustrate the implications of this force on the transport of cold atoms through simple potential structures, the triple-well harmonic trap and optical lattices.
In this paper we perform an analytic comparison of a number of techniques used to detect fake and deceptive online reviews. We apply a number machine learning approaches found to be effective, and introduce our own approach by fine-tuning state of the art contextualised embeddings. The results we obtain show the potential of contextualised embeddings for fake review detection, and lay the groundwork for future research in this area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا