No Arabic abstract
Photon coincidence spectroscopy is a promising technique for probing the nonlinear regime of cavity quantum electrodynamics in the optical domain, however its accuracy is mitigated by two factors: higher-order photon correlations, which contribute to an enhanced pair count rate, and non-simultaneity of emitted photon pairs from the optical cavity. We show that the technique of photon coincidence spectroscopy is effective in the presence of these effects if the quantitative predictions are adjusted to include non-simultaneity and higher-order correlations.
We show that photon coincidence spectroscopy can provide an unambiguous signature of two atoms simultaneously interacting with a quantised cavity field mode. We also show that the single-atom Jaynes-Cummings model can be probed effectively via photon coincidence spectroscopy, even with deleterious contributions to the signal from two-atom events. In addition, we have explicitly solved the eigenvectors and eigenvalues of two two-level atoms coupled to a quantised cavity mode for differing coupling strengths.
We propose and demonstrate a method for measuring the joint spectrum of photon pairs via Fourier spectroscopy. The biphoton spectral intensity is computed from a two-dimensional interferogram of coincidence counts. The method has been implemented for a type-I downconversion source using a pair of common-path Mach-Zender interferometers based on Soleil compensators. The experimental results agree well with calculated frequency correlations that take into account the effects of coupling into single-mode fibers. The Fourier method is advantageous over scanning spectrometry when detectors exhibit high dark count rates leading to dominant additive noise.
We compute perturbative QCD corrections to $B to D$ form factors at leading power in $Lambda/m_b$, at large hadronic recoil, from the light-cone sum rules (LCSR) with $B$-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to-$B$-meson correlation function with an interpolating current for the $D$-meson is demonstrated explicitly at one loop with the power counting scheme $m_c sim {cal O} left (sqrt{Lambda , m_b} right ) $. The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale $m_c$, compared to the counterparts entering the factorization formula of the vacuum-to-$B$-meson correction function for the construction of $B to pi$ from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of $B to D ell u$ indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the $B$-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic $B to D ell u$ form factors are then extrapolated to the entire kinematic region with the $z$-series parametrization. Phenomenological implications of our determinations for the form factors $f_{BD}^{+, 0}(q^2)$ are explored by investigating the (differential) branching fractions and the $R(D)$ ratio of $B to D ell u$ and by determining the CKM matrix element $|V_{cb}|$ from the total decay rate of $B to D mu u_{mu}$.
We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the D7s. The couplings of the axio-dilaton to the D-instanton moduli modify its classical source terms which are shown to be proportional to the elements of the D7 brane chiral ring. Solving the bulk field equations with the non-perturbatively corrected sources yields the full F-theory background. This solution represents the gravitational dual of the four-dimensional theory living on a probe D3 brane of type I, namely of the N=2, Sp(1) SYM theory with Nf=4. Our results provide an explicit microscopic derivation of the non-perturbative gravitational dual of this theory. They also explain the recent observation that the exact coupling for this theory can be entirely reconstructed from its perturbative part plus the knowledge of the chiral ring on the D7 branes supporting its flavor degrees of freedom.
The $B_c$ meson pair, including pairs of both pseudoscalar states and vector states, productions in high energy photon-photon interaction are investigated at the next-to-leading order (NLO) accuracy in the nonrelativistic quantum chromodynamics (NRQCD) factorization formalism. The corresponding cross sections at the future $e^+e^-$ colliders with $sqrt{s}=250$ GeV and $500$ GeV are evaluated. Numerical result indicates that the inclusion of the NLO corrections shall greatly suppress the scale dependence and enhance the prediction reliability. In addition to the phenomenological meaning, the NLO QCD calculation of this process subjects to certain technical issues, which are elucidated in details and might be applicable to other relevant investigations.