Do you want to publish a course? Click here

Face processing limitation to own species in primates: a comparative study in brown capuchins, Tonkean macaques and humans

46   0   0.0 ( 0 )
 Added by Brigitte Gaillard
 Publication date 2007
  fields Biology
and research's language is English




Ask ChatGPT about the research

Most primates live in social groups which survival and stability depend on individuals abilities to create strong social relationships with other group members. The existence of those groups requires to identify individuals and to assign to each of them a social status. Individual recognition can be achieved through vocalizations but also through faces. In humans, an efficient system for the processing of own species faces exists. This specialization is achieved through experience with faces of conspecifics during development and leads to the loss of ability to process faces from other primate species. We hypothesize that a similar mechanism exists in social primates. We investigated face processing in one Old World species (genus Macaca) and in one New World species (genus Cebus). Our results show the same advantage for own species face recognition for all tested subjects. This work suggests in all species tested the existence of a common trait inherited from the primate ancestor: an efficient system to identify individual faces of own species only.



rate research

Read More

Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuths energetic equivalence rule supported Van Valens conjecture by showing a trade off between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use established metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at lower densities than a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities that are up to four orders of magnitude greater than hunter-gatherers yet cities consume up to two orders of magnitude greater energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible through enormous fluxes of energy and materials across urban boundaries to sustain hyper-dense, modern humans. The metabolic rift with nature created by hyper-dense cities supported by fossil fuel energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
213 - Bradly Alicea 2013
The analysis of eight molecular datasets involving human and teleost examples along with morphological samples from several groups of Neotropical electric fish (Order: Gymnotiformes) were used in this thesis to test the dynamics of both intraspecific variation and interspecific diversity. In terms of investigating molecular interspecific diversity among humans, two experimental exercises were performed. A cladistic exchange experiment tested for the extent of discontinuity and interbreeding between H. sapiens and neanderthal populations. As part of the same question, another experimental exercise tested the amount of molecular variance resulting from simulations which treated neanderthals as being either a local population of modern humans or as a distinct subspecies. Finally, comparisons of hominid populations over time with fish species helped to define what constitutes taxonomically relevant differences between morphological populations as expressed among both trait size ranges and through growth patterns that begin during ontogeny. Compared to the subdivision found within selected teleost species, H. sapiens molecular data exhibited little variation and discontinuity between geographical regions. Results of the two experimental exercises concluded that neanderthals exhibit taxonomic distance from modern H. sapiens. However, this distance was not so great as to exclude the possibility of interbreeding between the two subspecific groups. Finally, a series of characters were analyzed among species of Neotropical electric fish. These analyses were compared with hominid examples to determine what constituted taxonomically relevant differences between populations as expressed among specific morphometric traits that develop during the juvenile phase.
We investigate the problem of the predominance and survival of weak species in the context of the simplest generalization of the spatial stochastic rock-paper-scissors model to four species by considering models in which one, two, or three species have a reduced predation probability. We show, using lattice based spatial stochastic simulations with random initial conditions, that if only one of the four species has its probability reduced then the most abundant species is the prey of the weakest (assuming that the simulations are large enough for coexistence to prevail). Also, among the remaining cases, we present examples in which weak and strong species have similar average abundances and others in which either of them dominates -- the most abundant species being always a prey of a weak species with which it maintains a unidirectional predator-prey interaction. However, in contrast to the three-species model, we find no systematic difference in the global performance of weak and strong species, and we conjecture that the same result will hold if the number of species is further increased. We also determine the probability of single species survival and coexistence as a function of the lattice size, discussing its dependence on initial conditions and on the change to the dynamics of the model which results from the extinction of one of the species.
107 - Jim Wu , Pankaj Mehta , 2021
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the community, neutral theory supposes functional equivalence between species and points to stochasticity as the primary driver of ecological dynamics. In this work, we draw a bridge between these two opposing theories. Starting from a Lotka-Volterra (LV) model with demographic noise and random symmetric interactions, we analytically derive the stationary population statistics and species abundance distribution (SAD). Using these results, we demonstrate that the model can exhibit three classes of SADs commonly found in niche and neutral theories and found conditions that allow an ecosystem to transition between these various regimes. Thus, we reconcile how neutral-like statistics may arise from a diverse community with niche differentiation.
Deterministic continuum models formulated in terms of non-local partial differential equations for the evolutionary dynamics of populations structured by phenotypic traits have been used recently to address open questions concerning the adaptation of asexual species to periodically fluctuating environmental conditions. These deterministic continuum models are usually defined on the basis of population-scale phenomenological assumptions and cannot capture adaptive phenomena that are driven by stochastic variability in the evolutionary paths of single individuals. In this paper, we develop a stochastic individual-based model for the coevolution between two competing phenotype-structured cell populations that are exposed to time-varying nutrient levels and undergo spontaneous, heritable phenotypic variations with different probabilities. The evolution of every cell is described by a set of rules that result in a discrete-time branching random walk on the space of phenotypic states. We formally show that the deterministic continuum counterpart of this model comprises a system of non-local partial differential equations for the cell population density functions coupled with an ordinary differential equation for the nutrient concentration. We compare the individual-based model and its continuum analogue, focussing on scenarios whereby the predictions of the two models differ. Our results clarify the conditions under which significant differences between the two models can emerge due to stochastic effects associated with small population levels. These differences arise in the presence of low probabilities of phenotypic variation, and become more apparent when the two populations are characterised by less fit initial mean phenotypes and smaller initial levels of phenotypic heterogeneity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا