We analyze several florae (collections of plant species populating specific areas) in different geographic and climatic regions. For every list of species we produce a taxonomic classification tree and we consider its statistical properties. We find that regardless of the geographical location, the climate and the environment all species collections have universal statistical properties that we show to be also robust in time. We then compare observed data sets with simulated communities obtained by randomly sampling a large pool of species from all over the world. We find differences in the behavior of the statistical properties of the corresponding taxonomic trees. Our results suggest that it is possible to distinguish quantitatively real species assemblages from random collections and thus demonstrate the existence of correlations between species.
Many networks are important because they are substrates for dynamical systems, and their pattern of functional connectivity can itself be dynamic -- they can functionally reorganize, even if their underlying anatomical structure remains fixed. However, the recent rapid progress in discovering the community structure of networks has overwhelmingly focused on that constant anatomical connectivity. In this paper, we lay out the problem of discovering_functional communities_, and describe an approach to doing so. This method combines recent work on measuring information sharing across stochastic networks with an existing and successful community-discovery algorithm for weighted networks. We illustrate it with an application to a large biophysical model of the transition from beta to gamma rhythms in the hippocampus.
The processes and mechanisms underlying the origin and maintenance of biological diversity have long been of central importance in ecology and evolution. The competitive exclusion principle states that the number of coexisting species is limited by the number of resources, or by the species similarity in resource use. Natural systems such as the extreme diversity of unicellular life in the oceans provide counter examples. It is known that mathematical models incorporating population fluctuations can lead to violations of the exclusion principle. Here we use simple eco-evolutionary models to show that a certain type of population dynamics, boom-bust dynamics, can allow for the evolution of much larger amounts of diversity than would be expected with stable equilibrium dynamics. Boom-bust dynamics are characterized by long periods of almost exponential growth (boom) and a subsequent population crash due to competition (bust). When such ecological dynamics are incorporated into an evolutionary model that allows for adaptive diversification in continuous phenotype spaces, desynchronization of the boom-bust cycles of coexisting species can lead to the maintenance of high levels of diversity.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterized with predation efficiency and death rates, to which Darwinian evolutionary adaptation is introduced. Competition for limited prey abundance drives the populations optimization with respect to predation efficiency and death rates. We study the influence of various ecological elements on the final state, finding that both indirect competition and evolutionary adaptation are insufficient to yield a stable ecosystem. However, stable three-species coexistence is observed when direct interaction between the two predator species is implemented.
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using dynamical community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
Mutation and drift play opposite roles in genetics. While mutation creates diversity, drift can cause gene variants to disappear, especially when they are rare. In the absence of natural selection and migration, the balance between the drift and mutation in a well-mixed population defines its diversity. The Moran model captures the effects of these two evolutionary forces and has a counterpart in social dynamics, known as the Voter model with external opinion influencers. Two extreme outcomes of the Voter model dynamics are consensus and polarization, which correspond to low and high diversity in the Moran model. Here we use a Shannons information-theoretic approach to characterize the smooth transition between the ordered and disordered states of consensus and polarization in the Voter model. Mapping the Moran into the Voter model we extend the results to the mutation-drift balance and characterize the transition between low and high diversity in finite populations. Describing the population as a network of connected individuals we show that the transition between the two regimes depends on the geographic structure of the population and on the possible asymmetries in the mutation rates.