No Arabic abstract
We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.
The mechanisms underlying collective migration, or the coordinated movement of a population of cells, are not well understood despite its ubiquitous nature. As a means to investigate collective migration, we consider a wound healing scenario in which a population of cells fills in the empty space left from a scratch wound. Here we present a simplified mathematical model that uses reaction-diffusion equations to model collective migration during wound healing with an emphasis on cell movement and its response to both cell signaling and cell-cell adhesion. We use the model to investigate the effect of the MAPK signaling cascade on cell-cell adhesion during wound healing after EGF treatment. Our results suggest that activation of the MAPK signaling cascade stimulates collective migration through increases in the pulling strength of leader cells. We further use the model to suggest that treating a cell population with EGF converts the time to wound closure (as function of wound area) from parabolic to linear.
Cells crawling through tissues migrate inside a complex fibrous environment called the extracellular matrix (ECM), which provides signals regulating motility. Here we investigate one such well-known pathway, involving mutually antagonistic signalling molecules (small GTPases Rac and Rho) that control the protrusion and contraction of the cell edges (lamellipodia). Invasive melanoma cells were observed migrating on surfaces with topography (array of posts), coated with adhesive molecules (fibronectin, FN) by Park et al., 2016. Several distinct qualitative behaviors they observed included persistent polarity, oscillation between the cell front and back, and random dynamics. To gain insight into the link between intracellular and ECM signaling, we compared experimental observations to a sequence of mathematical models encoding distinct hypotheses. The successful model required several critical factors. (1) Competition of lamellipodia for limited pools of GTPases. (2) Protrusion / contraction of lamellipodia influence ECM signaling. (3) ECM-mediated activation of Rho. A model combining these elements explains all three cellular behaviors and correctly predicts the results of experimental perturbations. This study yields new insight into how the dynamic interactions between intracellular signaling and the cells environment influence cell behavior.
We present a discrete stochastic model which represents many of the salient features of the biological process of wound healing. The model describes fronts of cells invading a wound. We have numerical results in one and two dimensions. In one dimension we can give analytic results for the front speed as a power series expansion in a parameter, p, that gives the relative size of proliferation and diffusion processes for the invading cells. In two dimensions the model becomes the Eden model for p near 1. In both one and two dimensions for small p, front propagation for this model should approach that of the Fisher-Kolmogorov equation. However, as in other cases, this discrete model approaches Fisher-Kolmogorov behavior slowly.
Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body, while at the same time raising the need to formalise this new knowledge. Here, we review current cell ontology efforts to harmonise and integrate different sources of annotations of cell types and states. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.
Cell proliferation is typically incorporated into stochastic mathematical models of cell migration by assuming that cell divisions occur after an exponentially distributed waiting time. Experimental observations, however, show that this assumption is often far from the real cell cycle time distribution (CCTD). Recent studies have suggested an alternative approach to modelling cell proliferation based on a multi-stage representation of the CCTD. In order to validate and parametrise these models, it is important to connect them to experimentally measurable quantities. In this paper we investigate the connection between the CCTD and the speed of the collective invasion. We first state a result for a general CCTD, which allows the computation of the invasion speed using the Laplace transform of the CCTD. We use this to deduce the range of speeds for the general case. We then focus on the more realistic case of multi-stage models, using both a stochastic agent-based model and a set of reaction-diffusion equations for the cells average density. By studying the corresponding travelling wave solutions, we obtain an analytical expression for the speed of invasion for a general N-stage model with identical transition rates, in which case the resulting cell cycle times are Erlang distributed. We show that, for a general N-stage model, the Erlang distribution and the exponential distribution lead to the minimum and maximum invasion speed, respectively. This result allows us to determine the range of possible invasion speeds in terms of the average proliferation time for any multi-stage model.