Do you want to publish a course? Click here

A simple model of cognitive processing in repeated games

74   0   0.0 ( 0 )
 Added by Anders Eriksson
 Publication date 2006
  fields Biology
and research's language is English




Ask ChatGPT about the research

In repeated interactions between individuals, we do not expect that exactly the same situation will occur from one time to another. Contrary to what is common in models of repeated games in the literature, most real situations may differ a lot and they are seldom completely symmetric. The purpose of this paper is to discuss a simple model of cognitive processing in the context of a repeated interaction with varying payoffs. The interaction between players is modelled by a repeated game with random observable payoffs. Cooperation is not simply associated with a certain action but needs to be understood as a phenomenon of the behaviour in the repeated game. The players are thus faced with a more complex situation, compared to the Prisoners Dilemma that has been widely used for investigating the conditions for cooperation in evolving populations. Still, there are robust cooperating strategies that usually evolve in a population of players. In the cooperative mode, these strategies select an action that allows for maximizing the sum of the payoff of the two players in each round, regardless of the own payoff. Two such players maximise the expected total long-term payoff. If the opponent deviates from this scheme, the strategy invokes a punishment action, which aims at lowering the opponents score for the rest of the (possibly infinitely) repeated game. The introduction of mistakes to the game actually pushes evolution towards more cooperative strategies even though the game becomes more difficult.



rate research

Read More

279 - Fang Chen , Te Wu , Guocheng Wang 2021
Direct reciprocity is a well-known mechanism that could explain how cooperation emerges and prevails in an evolving population. Numerous prior researches have studied the emergence of cooperation in multiplayer games. However, most of them use numerical or experimental methods, not theoretical analysis. This lack of theoretical works on the evolution of cooperation is due to the high complexity of calculating payoffs. In this paper, we propose a new method, namely, the state-clustering method to calculate the long-term payoffs in repeated games. Using this method, in an $n$-player repeated game, the computing complexity is reduced from $O(2^n)$ to $O(n^2)$, which makes it possible to compute a large-scale repeated games payoff. We explore the evolution of cooperation in both infinitely and finitely repeated public goods games as an example to show the effectiveness of our method. In both cases, we find that when the synergy factor is sufficiently large, the increasing number of participants in a game is detrimental to the evolution of cooperation. Our work provides a theoretical approach to study the evolution of cooperation in repeated multiplayer games.
423 - Fang Chen , Te Wu , Long Wang 2021
Since Press and Dysons ingenious discovery of ZD (zero-determinant) strategy in the repeated Prisoners Dilemma game, several studies have confirmed the existence of ZD strategy in repeated multiplayer social dilemmas. However, few researches study the evolutionary performance of multiplayer ZD strategies, especially from a theoretical perspective. Here, we use a newly proposed state-clustering method to theoretically analyze the evolutionary dynamics of two representative ZD strategies: generous ZD strategies and extortionate ZD strategies. Apart from the competitions between the two strategies and some classical strategies, we consider two new settings for multiplayer ZD strategies: competitions in the whole ZD strategy space and competitions in the space of all memory-1 strategies. Besides, we investigate the influence of level of generosity and extortion on the evolutionary dynamics of generous and extortionate ZD, which was commonly ignored in previous studies. Theoretical results show players with limited generosity are at an advantageous place and extortioners extorting more severely hold their ground more readily. Our results may provide new insights into better understanding the evolutionary dynamics of ZD strategies in repeated multiplayer games.
We propose a simple SIR model in order to investigate the impact of various confinement strategies on a most virulent epidemic. Our approach is motivated by the current COVID-19 pandemic. The main hypothesis is the existence of two populations of susceptible persons, one which obeys confinement and for which the infection rate does not exceed 1, and a population which, being non confined for various imperatives, can be substantially more infective. The model, initially formulated as a differential system, is discretised following a specific procedure, the discrete system serving as an integrator for the differential one. Our model is calibrated so as to correspond to what is observed in the COVID-19 epidemic. Several conclusions can be reached, despite the very simple structure of our model. First, it is not possible to pinpoint the genesis of the epidemic by just analysing data from when the epidemic is in full swing. It may well turn out that the epidemic has reached a sizeable part of the world months before it became noticeable. Concerning the confinement scenarios, a universal feature of all our simulations is that relaxing the lockdown constraints leads to a rekindling of the epidemic. Thus we sought the conditions for the second epidemic peak to be lower than the first one. This is possible in all the scenarios considered (abrupt, progressive or stepwise exit) but typically a progressive exit can start earlier than an abrupt one. However, by the time the progressive exit is complete, the overall confinement times are not too different. From our results, the most promising strategy is that of a stepwise exit. And in fact its implementation could be quite feasible, with the major part of the population (minus the fragile groups) exiting simultaneously but obeying rigorous distancing constraints.
Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.
353 - Stefan Tappe 2020
The goal of this note is to present a simple mathematical model with two parameters for the number of deaths due to the corona (COVID-19) virus. The model only requires basic knowledge in differential calculus, and can also be understood by pupils attending secondary school. The model can easily be implemented on a computer, and we will illustrate it on the basis of case studies for different countries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا