No Arabic abstract
We propose a simple SIR model in order to investigate the impact of various confinement strategies on a most virulent epidemic. Our approach is motivated by the current COVID-19 pandemic. The main hypothesis is the existence of two populations of susceptible persons, one which obeys confinement and for which the infection rate does not exceed 1, and a population which, being non confined for various imperatives, can be substantially more infective. The model, initially formulated as a differential system, is discretised following a specific procedure, the discrete system serving as an integrator for the differential one. Our model is calibrated so as to correspond to what is observed in the COVID-19 epidemic. Several conclusions can be reached, despite the very simple structure of our model. First, it is not possible to pinpoint the genesis of the epidemic by just analysing data from when the epidemic is in full swing. It may well turn out that the epidemic has reached a sizeable part of the world months before it became noticeable. Concerning the confinement scenarios, a universal feature of all our simulations is that relaxing the lockdown constraints leads to a rekindling of the epidemic. Thus we sought the conditions for the second epidemic peak to be lower than the first one. This is possible in all the scenarios considered (abrupt, progressive or stepwise exit) but typically a progressive exit can start earlier than an abrupt one. However, by the time the progressive exit is complete, the overall confinement times are not too different. From our results, the most promising strategy is that of a stepwise exit. And in fact its implementation could be quite feasible, with the major part of the population (minus the fragile groups) exiting simultaneously but obeying rigorous distancing constraints.
We present a series of SIR-network models, extended with a game-theoretic treatment of imitation dynamics which result from regular population mobility across residential and work areas and the ensuing interactions. Each considered SIR-network model captures a class of vaccination behaviours influenced by epidemic characteristics, interaction topology, and imitation dynamics. Our focus is the eventual vaccination coverage, produced under voluntary vaccination schemes, in response to these varying factors. Using the next generation matrix method, we analytically derive and compare expressions for the basic reproduction number $R_0$ for the proposed SIR-network models. Furthermore, we simulate the epidemic dynamics over time for the considered models, and show that if individuals are sufficiently responsive towards the changes in the disease prevalence, then the more expansive travelling patterns encourage convergence to the endemic, mixed equilibria. On the contrary, if individuals are insensitive to changes in the disease prevalence, we find that they tend to remain unvaccinated in all the studied models. Our results concur with earlier studies in showing that residents from highly connected residential areas are more likely to get vaccinated. We also show that the existence of the individuals committed to receiving vaccination reduces $R_0$ and delays the disease prevalence, and thus is essential to containing epidemics.
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact on the health system and the human, material, and economic resources that will be necessary. In this paper, we construct an extended Susceptible-Exposed-Infected-Recovered model that incorporates the social structure of Mar del Plata, the $4^circ$ most inhabited city in Argentina and head of the Municipality of General Pueyrredon. Moreover, we consider detailed partitions of infected individuals according to the illness severity, as well as data of local health resources, to bring these predictions closer to the local reality. Tuning the corresponding epidemic parameters for COVID-19, we study an alternating quarantine strategy, in which a part of the population can circulate without restrictions at any time, while the rest is equally divided into two groups and goes on successive periods of normal activity and lockdown, each one with a duration of $tau$ days. Besides, we implement a random testing strategy over the population. We found that $tau = 7$ is a good choice for the quarantine strategy since it matches with the weekly cycle as it reduces the infected population. Focusing on the health system, projecting from the situation as of September 30, we foresee a difficulty to avoid saturation of ICU, given the extremely low levels of mobility that would be required. In the worst case, our model estimates that four thousand deaths would occur, of which 30% could be avoided with proper medical attention. Nonetheless, we found that aggressive testing would allow an increase in the percentage of people that can circulate without restrictions, being the equipment required to deal with the additional critical patients relatively low.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
We present a compartmental meta-population model for the spread of Covid-19 in India. Our model simulates populations at a district or state level using an epidemiological model that is appropriate to Covid-19. Different districts are connected by a transportation matrix developed using available census data. We introduce uncertainties in the testing rates into the model that takes into account the disparate responses of the different states to the epidemic and also factors in the state of the public healthcare system. Our model allows us to generate qualitative projections of Covid-19 spread in India, and further allows us to investigate the effects of different proposed interventions. By building in heterogeneity at geographical and infrastructural levels and in local responses, our model aims to capture some of the complexity of epidemiological modeling appropriate to a diverse country such as India.
The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel between counties. For the initial months in which the Ebola virus spreads, we find that the arrival times of the disease into the counties predicted by our model are compatible with World Health Organization data, but we also find that reducing mobility is insufficient to contain the epidemic because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect of a strategy in which safe burials are increased and effective hospitalisation instituted under two scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August---which was the actual time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the lifetime of the epidemic would have been three months shorter and the total number of infected individuals 80% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will stop by mid-spring 2015.