Do you want to publish a course? Click here

q-Difference Realization of U_q(sl(M|N)) and Its Application to Free Boson Realization of U_q(widehat{sl}(2|1))

75   0   0.0 ( 0 )
 Added by S. Odake
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

We present a q-difference realization of the quantum superalgebra U_q(sl(M|N)), which includes Grassmann even and odd coordinates and their derivatives. Based on this result we obtain a free boson realization of the quantum affine superalgebra U_q(widehat{sl}(2|1)) of an arbitrary level k.



rate research

Read More

117 - Takeo Kojima 2014
We give a bosonization of the quantum affine superalgebra $U_q(widehat{sl}(N|1))$ for an arbitrary level $k in {bf C}$. The bosonization of level $k in {bf C}$ is completely different from those of level $k=1$. From this bosonization, we induce the Wakimoto realization whose character coincides with those of the Verma module. We give the screening that commute with $U_q(widehat{sl}(N|1))$. Using this screening, we propose the vertex operator that is the intertwiner among the Wakimoto realization and typical realization. We study non-vanishing property of the correlation function defined by a trace of the vertex operators.
We determine the Clebsch-Gordan and Racah-Wigner coefficients for continuous series of representations of the quantum deformed algebras U_q(sl(2)) and U_q(osp(1|2)). While our results for the former algebra reproduce formulas by Ponsot and Teschner, the expressions for the orthosymplectic algebra are new. Up to some normalization factors, the associated Racah-Wigner coefficients are shown to agree with the fusing matrix in the Neveu-Schwarz sector of N=1 supersymmetric Liouville field theory.
We offer a complete classification of right coideal subalgebras which contain all group-like elements for the multiparameter version of the quantum group $U_q(mathfrak{sl}_{n+1})$ provided that the main parameter $q$ is not a root of 1. As a consequence, we determine that for each subgroup $Sigma $ of the group $G$ of all group-like elements the quantum Borel subalgebra $U_q^+ (mathfrak{sl}_{n+1})$ containes $(n+1)!$ different homogeneous right coideal subalgebras $U$ such that $Ucap G=Sigma .$ If $q$ has a finite multiplicative order $t>2,$ the classification remains valid for homogeneous right coideal subalgebras of the multiparameter version of the Lusztig quantum group $u_q (frak{sl}_{n+1}).$ In the paper we consider the quantifications of Kac-Moody algebras as character Hopf algebras [V.K. Kharchenko, A combinatorial approach to the quantifications of Lie algebras, Pacific J. Math., 203(1)(2002), 191- 233].
We construct quasilocal conserved charges in the gapless ($|Delta| le 1$) regime of the Heisenberg $XXZ$ spin-$1/2$ chain, using semicyclic irreducible representations of $U_q(mathfrak{sl}_2)$. These representations are characterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra. Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do not possess the $U(1)$ symmetry of the Hamiltonian. The possibility of application in relaxation dynamics resulting from $U(1)$-breaking quantum quenches is discussed.
Given an orientable weakly self-dual manifold X of rank two, we build a geometric realization of the Lie algebra sl(6,C) as a naturally defined algebra L of endomorphisms of the space of differential forms of X. We provide an explicit description of Serre generators in terms of natural generators of L. This construction gives a bundle on X which is related to the search for a natural Gauge theory on X. We consider this paper as a first step in the study of a rich and interesting algebraic structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا