Do you want to publish a course? Click here

Quasilocal conservation laws from semicyclic irreducible representations of $U_q(mathfrak{sl}_2)$ in $XXZ$ spin-$1/2$ chains

71   0   0.0 ( 0 )
 Added by Marko Medenjak
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct quasilocal conserved charges in the gapless ($|Delta| le 1$) regime of the Heisenberg $XXZ$ spin-$1/2$ chain, using semicyclic irreducible representations of $U_q(mathfrak{sl}_2)$. These representations are characterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra. Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do not possess the $U(1)$ symmetry of the Hamiltonian. The possibility of application in relaxation dynamics resulting from $U(1)$-breaking quantum quenches is discussed.



rate research

Read More

We determine the Clebsch-Gordan and Racah-Wigner coefficients for continuous series of representations of the quantum deformed algebras U_q(sl(2)) and U_q(osp(1|2)). While our results for the former algebra reproduce formulas by Ponsot and Teschner, the expressions for the orthosymplectic algebra are new. Up to some normalization factors, the associated Racah-Wigner coefficients are shown to agree with the fusing matrix in the Neveu-Schwarz sector of N=1 supersymmetric Liouville field theory.
We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.
203 - Da Xu , Palle Jorgensen 2010
This paper is concerned with integrals which integrands are the monomials of matrix elements of irreducible representations of classical groups. Based on analysis on Young tableaux, we discuss some related duality theorems and compute the asymptotics of the group integrals when the signatures of the irreducible representations are fixed, as the rank of the classical groups go to infinity. These group integrals have physical origins in quantum mechanics, quantum information theory, and lattice Gauge theory.
129 - Tomoki Ohsawa 2014
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noethers theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn, and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformations, the notion of normalized classes of differential equations and the adjoint variational principle. All possible potential conservation laws are described completely. They are in fact exhausted by local conservation laws. For any equation from the above class the characteristic space of local conservation laws is isomorphic to the solution set of the adjoint equation. Effective criteria for the existence of potential symmetries are proposed. Their proofs involve a rather intricate interplay between different representations of potential systems, the notion of a potential equation associated with a tuple of characteristics, prolongation of the equivalence group to the whole potential frame and application of multiple dual Darboux transformations. Based on the tools developed, a preliminary analysis of generalized potential symmetries is carried out and then applied to substantiate our construction of potential systems. The simplest potential symmetries of the linear heat equation, which are associated with single conservation laws, are classified with respect to its point symmetry group. Equations possessing infinite series of potential symmetry algebras are studied in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا