Do you want to publish a course? Click here

Preliminary Results for LP VPE X-Ray Detectors

384   0   0.0 ( 0 )
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thick epitaxial layers have been grown using Low Pressure Vapour Phase Epitaxy techniques with low free carrier concentrations . This type of material is attractive as a medium for X-ray detection, because of its high conversion efficiency for X-rays in the medically interesting energy range.



rate research

Read More

3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200um, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110um to 150um. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am241 gamma-ray sources, charge collection tests with Sr90 beta-source and an overview of preliminary results from the CERN beam test.
98 - D. Unger , A. Abeln , C. Enss 2020
Axion helioscopes like the planned International Axion Observatory (IAXO) search for evidence of axions and axion-like particles (ALPs) from the Sun. A strong magnetic field is used to convert ALPs into photons via the generic ALP-photon coupling. To observe the resulting photons, X-ray detectors with low background and high efficiency are necessary. In addition, good energy resolution and low energy threshold would allow for investigating the ALP properties by studying the X-ray spectrum after its discovery. We propose to use low temperature metallic magnetic calorimeters (MMCs). Here we present the first detector system based on MMCs developed for IAXO and discuss the results of the characterization. The detector consists of a two-dimensional 64-pixel array covering an active area of 16 mm$^2$ with a fill factor of 93 %. We achieve an average energy resolution of 6.1 eV FWHM allowing for energy thresholds below 100 eV. This detector is the first step towards a larger 1 cm$^2$ array matching the IAXO X-ray optics. We determine the background rate for an unshielded detector system in the energy range between 1 keV and 10 keV to be $3.2(1) times 10^{-4}$ keV$^{-1}$ cm$^{-2}$ s$^{-1}$ from events acquired over 30 days. In the future, active and passive shields will significantly reduce the background induced by cosmic muons and natural radioactivity. Our results demonstrate that MMCs are a promising technology for helioscopes to discover and study ALPs.
In the last few years our group have focused on developing various designs of spark-protected micropattern gaseous detectors featuring resistive electrodes instead of the traditional metallic ones: resistive microstrip counters, resistive GEM, resistive MICROMEGAS. These detectors combine in one design the best features of RPCs (spark-protection) and micropattern detectors (a high position resolution). In this paper we report the progress so far made in developing other types of resistive micropattern detectors: a microdot-microhole detector and a microgap-microstrip detector. The former detector is an optimal electron amplifier for some special designs of dual phase noble liquid TPCs, for example with a CsI photocathode immersed inside the noble liquid. Preliminary tests of such a detector, for the first time built and investigated, are reported in this paper. The latter detector is mainly orientated towards medical imaging applications such as X-ray scanners. However, we believe that after a proper gas optimization, these detectors could also achieve a high time resolution and could thus be used in applications as TOF-PET, detection of charged particles with simultaneous high time and position resolution etc.
The present understanding of the charge collection in GaAs detectors with respect to the materials used and its processing are discussed. The radiation induced degradation of the charge collection efficiency and the leakage current of the detectors are summarised. The status of strip and pixel detectors for the ATLAS experiment are reported along with the latest results from GaAs X-ray detectors for non-high energy physics applications.
Large-area lithium-drifted silicon (Si(Li)) detectors, operable 150{deg}C above liquid nitrogen temperature, have been developed for the General Antiparticle Spectrometer (GAPS) balloon mission and will form the first such system to operate in space. These 10 cm-diameter, 2.5 mm-thick multi-strip detectors have been verified in the lab to provide <4 keV FWHM energy resolution for X-rays as well as tracking capability for charged particles, while operating in conditions (~-40{deg}C and ~1 Pa) achievable on a long-duration balloon mission with a large detector payload. These characteristics enable the GAPS silicon tracker system to identify cosmic antinuclei via a novel technique based on exotic atom formation, de-excitation, and annihilation. Production and large-scale calibration of ~1000 detectors has begun for the first GAPS flight, scheduled for late 2021. The detectors developed for GAPS may also have other applications, for example in heavy nuclei identification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا