Do you want to publish a course? Click here

Development and preliminary tests of resistive microdot and microstrip detectors

172   0   0.0 ( 0 )
 Added by Vladimir Peskov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the last few years our group have focused on developing various designs of spark-protected micropattern gaseous detectors featuring resistive electrodes instead of the traditional metallic ones: resistive microstrip counters, resistive GEM, resistive MICROMEGAS. These detectors combine in one design the best features of RPCs (spark-protection) and micropattern detectors (a high position resolution). In this paper we report the progress so far made in developing other types of resistive micropattern detectors: a microdot-microhole detector and a microgap-microstrip detector. The former detector is an optimal electron amplifier for some special designs of dual phase noble liquid TPCs, for example with a CsI photocathode immersed inside the noble liquid. Preliminary tests of such a detector, for the first time built and investigated, are reported in this paper. The latter detector is mainly orientated towards medical imaging applications such as X-ray scanners. However, we believe that after a proper gas optimization, these detectors could also achieve a high time resolution and could thus be used in applications as TOF-PET, detection of charged particles with simultaneous high time and position resolution etc.



rate research

Read More

The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber and resistive microdot detectors using additional field shaping strips located inside the detector substrate are described
A new family of spark-protected micropattern gaseous detectors is introduced: a 2-D sensitive restive microstrip counter and hybrid detectors, which combine in one design a resistive GEM with a microstrip detector. These novel detectors have several important advantages over other conventional micropattern detectors and are unique for applications like the readout detectors for dual phase noble liquid TPCs and RICHs.
We report promising initial results obtained with new resistive-electrode GEM (RETGEM) detectors manufactured, for the first time, using screen printing technology. These new detectors allow one to reach gas gains nearly as high as with ordinary GEM-like detectors with metallic electrodes; however, due to the high resistivity of its electrodes the RETGEM, in contrast to ordinary hole-type detectors, has the advantage of being fully spark protected. We discovered that RETGEMs can operate stably and at high gains in noble gases and in other badly quenched gases, such as mixtures of noble gases with air and in pure air; therefore, a wide range of practical applications, including dosimetry and detection of dangerous gases, is foreseeable. To promote a better understanding of RETGEM technology some comparative studies were completed with metallic-electrode thick GEMs. A primary benefit of these new RETGEMs is that the screen printing technology is easily accessible to many research laboratories. This accessibility encourages the possibility to manufacture these GEM-like detectors with the electrode resistivity easily optimized for particular experimental or practical applications.
The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.
The Multi-gap Resistive Plate Chamber (MRPC) is an advanced form of Resistive Plate Chamber (RPC) detector where the gas gap is divided into sub-gaps. MRPCs are known for their good time resolution and detection efficiency for charged particles. They have found suitable applications in several high energy physics experiments like ALICE in LHC, CERN, Geneva, Switzerland, and STAR in RHIC, BNL, USA. As they have very good time resolution and are of low cost, they can be a suitable replacement for very expensive scintillators used in Positron Emission Tomography Imaging. The MRPCs that are being used nowadays are developed with glass electrodes. We have made an attempt to develop a 6-gap MRPC using bakelite electrodes. The outer electrodes are of dimensions 15 cm $times$ 15 cm $times$ 0.3 cm and the inner electrodes are of dimension 14 cm $times$ 14 cm $times$ 0.05 cm. The glossy finished electrode surfaces have not been treated with any oil like linseed, silicone for smoothness. The performance of the detector has been studied measuring the efficiency, noise rate and time resolution with cosmic rays. This effort is towards the development of a prototype for Positron Emission Tomography with the Time-Of-Flight technique using MRPCs. Details of the development procedure and performance studies have been presented here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا