We propose two ways for determining the Greens matrix for problems admitting Hamiltonians that have infinite symmetric tridiagonal (i.e. Jacobi) matrix form on some basis representation. In addition to the recurrence relation comming from the Jacobi-matrix, the first approach also requires the matrix elements of the Greens operator between the first elements of the basis. In the second approach the recurrence relation is solved directly by continued fractions and the solution is continued analytically to the whole complex plane. Both approaches are illustrated with the non-trivial but calculable example of the D-dimensional Coulomb Greens matrix. We give the corresponding formulas for the D-dimensional harmonic oscillator as well.
This note considers Sturm oscillation theory for regular matrix Sturm-Liouville operators on finite intervals and for matrix Jacobi operators. The number of space oscillations of the eigenvalues of the matrix Prufer phases at a given energy, defined by a suitable lift in the Jacobi case, is shown to be equal to the number of eigenvalues below that energy. This results from a positivity property of the Prufer phases, namely they cannot cross $-1$ in the negative direction, and is also shown to be closely linked to the positivity of the matrix Prufer phase in the energy variable. The theory is illustrated by numerical calculations for an explicit example.
The iterative method of Sinkhorn allows, starting from an arbitrary real matrix with non-negative entries, to find a so-called scaled matrix which is doubly stochastic, i.e. a matrix with all entries in the interval (0, 1) and with all line sums equal to 1. We conjecture that a similar procedure exists, which allows, starting from an arbitrary unitary matrix, to find a scaled matrix which is unitary and has all line sums equal to 1. The existence of such algorithm guarantees a powerful decomposition of an arbitrary quantum circuit.
We focus on symmetries related to matrices and vectors appearing in the simulation of quantum many-body systems. Spin Hamiltonians have special matrix-symmetry properties such as persymmetry. Furthermore, the systems may exhibit physical symmetries translating into symmetry properties of the eigenvectors of interest. Both types of symmetry can be exploited in sparse representation formats such as Matrix Product States (MPS) for the desired eigenvectors. This paper summarizes symmetries of Hamiltonians for typical physical systems such as the Ising model and lists resulting properties of the related eigenvectors. Based on an overview of Matrix Product States (Tensor Trains or Tensor Chains) and their canonical normal forms we show how symmetry properties of the vector translate into relations between the MPS matrices and, in turn, which symmetry properties result from relations within the MPS matrices. In this context we analyze different kinds of symmetries and derive appropriate normal forms for MPS representing these symmetries. Exploiting such symmetries by using these normal forms will lead to a reduction in the number of degrees of freedom in the MPS matrices. This paper provides a uniform platform for both well-known and new results which are presented from the (multi-)linear algebra point of view.
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann-Hilbert problems, thus paving the way to a steepest descent analysis and universality results. The interpretation of the formal expansion of the partition function in terms of multicolored ribbon-graphs is provided and a connection to the O(1) model. A steepest descent analysis of the partition function reveals that the model is related to a trigonal curve (three-sheeted covering of the plane) much in the same way as the Hermitean matrix model is related to a hyperelliptic curve.
We propose to analyse the statistical properties of a sequence of vectors using the spectrum of the associated Gram matrix. Such sequences arise e.g. by the repeated action of a deterministic kicked quantum dynamics on an initial condition or by a random process. We argue that, when the number of time-steps, suitably scaled with respect to $hbar$, increases, the limiting eigenvalue distribution of the Gram matrix reflects the possible quantum chaoticity of the original system as it tends to its classical limit. This idea is subsequently applied to study the long-time properties of sequences of random vectors at the time scale of the dimension of the Hilbert space of available states.