Do you want to publish a course? Click here

Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

138   0   0.0 ( 0 )
 Added by Christian Roos
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in 43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of the metastable level as A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the existence of transitions that become independent of the first-order Zeeman shift at non-zero low magnetic fields. These transitions might be better suited for building a frequency standard than the well-known clock transitions between m=0 levels at zero magnetic field.

rate research

Read More

We report the first experimental determination of the hyperfine quenching rate of the $6s^2 ^1!S_0 (F=1/2) - 6s6p ^3!P_0 (F=1/2)$ transition in $^{171}$Yb with nuclear spin $I=1/2$. This rate determines the natural linewidth and the Rabi frequency of the clock transition of a Yb optical frequency standard. Our technique involves spectrally resolved fluorescence decay measurements of the lowest lying $^3!P_{0,1}$ levels of neutral Yb atoms embedded in a solid Ne matrix. The solid Ne provides a simple way to trap a large number of atoms as well as an efficient mechanism for populating $^3!P_0$. The decay rates in solid Ne are modified by medium effects including the index-of-refraction dependence. We find the $^3!P_0$ hyperfine quenching rate to be $(4.42pm0.35)times10^{-2} mathrm{s}^{-1}$ for free $^{171}$Yb, which agrees with recent ab initio calculations.
In this paper, we have calculated parity nonconserving electric dipole transition amplitudes of the hyperfine components for the transitions between the ground and first excited states of $^{137}$Ba$^{+}$ and $^{87}$Sr$^{+}$ using sum-over-states technique. The results are presented to extract the constants associated with the nuclear spin dependent amplitudes from experimental measurements. The wavefunctions to calculate the most dominant part of the sums are constructed using highly correlated coupled-cluster theory based on the Dirac-Coulomb-Gaunt Hamiltonian.
299 - F. Levi , D. Calonico , L. Lorini 2003
We used a Cs atomic fountain frequency standard to measure the Stark shift on the ground state hyperfine transiton frequency in cesium (9.2 GHz) due to the electric field generated by the blackbody radiation. The measures relative shift at 300 K is -1.43(11)e-14 and agrees with our theoretical evaluation -1.49(07)e-14. This value differs from the currently accepted one -1.69(04)e-14. The difference has a significant implication on the accuracy of frequency standards, in clocks comparison, and in a variety of high precision physics tests such as the time stability of fundamental constants.
Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.
The hyperfine structure of the long-lived $5D_{3/2}$ and $5D_{5/2}$ levels of Ba$^+$ ion is analyzed. A procedure for extracting relatively unexplored nuclear magnetic moments $Omega$ is presented. The relevant electronic matrix elements are computed in the framework of the ab initio relativistic many-body perturbation theory. Both the first- and the second-order (in the hyperfine interaction) corrections to the energy levels are analyzed. It is shown that a simultaneous measurement of the hyperfine structure of the entire $5D_J$ fine-structure manifold allows one to extract $Omega$ without contamination from the second-order corrections. Measurements to the required accuracy should be possible with a single trapped barium ion using sensitive techniques already demonstrated in Ba$^+$ experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا