Do you want to publish a course? Click here

Accelerator Neutrino Beams

208   0   0.0 ( 0 )
 Added by Sacha E. Kopp
 Publication date 2006
  fields Physics
and research's language is English
 Authors Sacha E. Kopp




Ask ChatGPT about the research

Neutrino beams at from high-energy proton accelerators have been instrumental discovery tools in particle physics. Neutrino beams are derived from the decays of charged pi and K mesons, which in turn are created from proton beams striking thick nuclear targets. The precise selection and manipulation of the pi/K beam control the energy spectrum and type of neutrino beam. This article describes the physics of particle production in a target and manipulation of the particles to derive a neutrino beam, as well as numerous innovations achieved at past experimental facilities.



rate research

Read More

Neutrino beams obtained from proton accelerators were first operated in 1962. Since then, neutrino beams have been intensively used in particle physics and evolved in many different ways. We describe the characteristics of various neutrino beams, relating them to the historical development of the physics studies and discoveries. We also discuss some of the ideas still under consideration for future neutrino beams.
146 - S.Childress , J.Strait 2013
Fermilab has had a very active long baseline neutrino program since initiation of the NuMI project in 1998. Commissioned in 2005, the NuMI beam with 400 kW design power has been in operation for the MINOS neutrino oscillation program since that time. Upgrade of NuMI to 700 kW for NOvA is now well advanced, with implementation of the beam upgrades to be accomplished in 2012-2013. Design development for the next generation LBNE neutrino beam is now a major ongoing effort. We report here salient features and constraints for each of these beams, as well as significant challenges both experienced and expected.
389 - M. Mezzetto , F. Terranova 2020
The three-flavor neutrino oscillation paradigm is well established in particle physics thanks to the crucial contribution of accelerator neutrino beam experiments. In this paper we review the most important contributions of these experiments to the physics of massive neutrinos after the discovery of $theta_{13}$ and future perspectives in such a lively field of research. Special emphasis is given to the technical challenges of high power beams and the oscillation results of T2K, OPERA, ICARUS and NO$ u$A. We discuss in details the role of accelerator neutrino experiments in the precision era of neutrino physics in view of DUNE and Hyper-Kamiokande, the programme of systematic uncertainty reduction and the development of new beam facilities.
Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.
Neutrino oscillation physics has entered a new precision era, which poses major challenges to the level of control and diagnostics of the neutrino beams. In this paper, we review the design of high-precision beams, their current limitations, and the latest techniques envisaged to overcome such limits. We put emphasis on monitored neutrino beams and advanced diagnostics to determine the flux and flavor of the neutrinos produced at the source at the per-cent level. We also discuss ab-initio measurements of the neutrino energy -- i.e. measurements performed without relying on the event reconstruction at the neutrino detector -- to remove any flux-induced bias in the determination of the cross sections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا