Do you want to publish a course? Click here

Demonstration of a moving guide based atom interferometer for rotation sensing

77   0   0.0 ( 0 )
 Added by Saijun Wu
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate area-enclosing atom interferometry based on a moving guide. Light pulses along the free propagation direction of a magnetic guide are applied to split and recombine the confined atomic matter-wave, while the atoms are translated back and forth along a second direction in 50 ms. The interferometer is estimated to resolve ten times the earth rotation rate per interferometry cycle. We demonstrate a ``folded figure 8 interfering configuration for creating a compact, large-area atom gyroscope with multiple-turn interfering paths.



rate research

Read More

We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just 10 pulses, each of $sim20$ ps duration, and demonstrate an entangled Bell-state with $(76pm1)$% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.
We demonstrate a time scale based on a phase stable optical carrier that accumulates an estimated time error of $48pm94$ ps over 34 days of operation. This all-optical time scale is formed with a cryogenic silicon cavity exhibiting improved long-term stability and an accurate $^{87}$Sr lattice clock. We show that this new time scale architecture outperforms existing microwave time scales, even when they are steered to optical frequency standards. Our analysis indicates that this time scale is capable of reaching a stability below $1times10^{-17}$ after a few months of averaging, making timekeeping at the $10^{-18}$ level a realistic prospect.
Point source atom interferometry is a promising approach for implementing robust, high-sensitivity, rotation sensors using cold atoms. However, its scale factor, i.e., the ratio between the interferometer signal and the actual rotation rate, depends on the initial conditions of the atomic cloud, which may drift in time and result in bias instability, particularly in compact devices with short interrogation times. We present two methods to stabilize the scale factor, one relying on a model-based correction which exploits correlations between multiple features of the interferometer output and works on a single-shot basis, and the other a self-calibrating method where a known bias rotation is applied to every other measurement, requiring no prior knowledge of the underlying model but reducing the sensor bandwidth by a factor of two. We demonstrate both schemes experimentally with complete suppression of scale factor drifts, maintaining the original rotation sensitivity and allowing for bias-free operation over several hours.
We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type atom interferometer operated with laser-cooled $^{87}$Rb. Raman processes are employed to coherently manipulate the matter waves. We describe and characterize the experimental apparatus. A method for passing from a compact geometry to an extended interferometer with three independent atom-light interaction zones is proposed and investigated. The extended geometry will enhance the sensitivity by more than two orders of magnitude which is necessary to achieve sensitivities better than $10^{-8} $rad/s/$sqrt{rm Hz}$.
177 - S. J. Kim , H. Yu , S. T. Gang 2016
We construct a matter-wave beam splitter using 87Rb Bose-Einstein condensate on an atom chip. Through the use of radio-frequency-induced double-well potentials, we were able to split a BEC into two clouds separated by distances ranging from 2.8 {mu}m to 57 {mu}m. Interference between these two freely expanding BECs has been observed. By varying the rf-field amplitude, frequency, or polarization, we investigate behaviors of the beam-splitter. From the perspective of practical use, our BEC manipulation system is suitable for application to interferometry since it is compact and the repetition rate is high due to the anodic bonded atom chip on the vacuum cell. The portable system occupies a volume of 0.5 m3 and operates at a repetition rate as high as ~0.2 Hz.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا