Do you want to publish a course? Click here

Non-equilibrium dynamics of language games on complex networks

72   0   0.0 ( 0 )
 Added by Alain Barrat
 Publication date 2006
  fields Physics
and research's language is English
 Authors Luca DallAsta




Ask ChatGPT about the research

The Naming Game is a model of non-equilibrium dynamics for the self-organized emergence of a linguistic convention or a communication system in a population of agents with pairwise local interactions. We present an extensive study of its dynamics on complex networks, that can be considered as the most natural topological embedding for agents involved in language games and opinion dynamics. Except for some community structured networks on which metastable phases can be observed, agents playing the Naming Game always manage to reach a global consensus. This convergence is obtained after a time generically scaling with the populations size $N$ as $t_{conv} sim N^{1.4 pm 0.1}$, i.e. much faster than for agents embedded on regular lattices. Moreover, the memory capacity required by the system scales only linearly with its size. Particular attention is given to heterogenous networks, in which the dynamical activity pattern of a node depends on its degree. High degree nodes have a fundamental role, but require larger memory capacity. They govern the dynamics acting as spreaders of (linguistic) conventions. The effects of other properties, such as the average degree and the clustering, are also discussed.



rate research

Read More

153 - James P. Gleeson 2012
A wide class of binary-state dynamics on networks---including, for example, the voter model, the Bass diffusion model, and threshold models---can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest neighbors in each of the two possible states. High-accuracy approximations for the emergent dynamics of such models on uncorrelated, infinite networks are given by recently-developed compartmental models or approximate master equations (AME). Pair approximations (PA) and mean-field theories can be systematically derived from the AME. We show that PA and AME solutions can coincide under certain circumstances, and numerical simulations confirm that PA is highly accurate in these cases. For monotone dynamics (where transitions out of one nodal state are impossible, e.g., SI disease-spread or Bass diffusion), PA and AME give identical results for the fraction of nodes in the infected (active) state for all time, provided the rate of infection depends linearly on the number of infected neighbors. In the more general non-monotone case, we derive a condition---that proves equivalent to a detailed balance condition on the dynamics---for PA and AME solutions to coincide in the limit $t to infty$. This permits bifurcation analysis, yielding explicit expressions for the critical (ferromagnetic/paramagnetic transition) point of such dynamics, closely analogous to the critical temperature of the Ising spin model. Finally, the AME for threshold models of propagation is shown to reduce to just two differential equations, and to give excellent agreement with numerical simulations. As part of this work, Octave/Matlab code for implementing and solving the differential equation systems is made available for download.
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.
71 - Luca DallAsta 2021
Simple binary-state coordination models are widely used to study collective socio-economic phenomena such as the spread of innovations or the adoption of products on social networks. The common trait of these systems is the occurrence of large-scale coordination events taking place abruptly, in the form of a cascade process, as a consequence of small perturbations of an apparently stable state. The conditions for the occurrence of cascade instabilities have been largely analysed in the literature, however for the same coordination models no sufficient attention was given to the relation between structural properties of (Nash) equilibria and possible outcomes of dynamical equilibrium selection. Using methods from the statistical physics of disordered systems, the present work investigates both analytically and numerically, the statistical properties of such Nash equilibria on networks, focusing mostly on random graphs. We provide an accurate description of these properties, which is then exploited to shed light on the mechanisms behind the onset of coordination/miscoordination on large networks. This is done studying the most common processes of dynamical equilibrium selection, such as best response, bounded-rational dynamics and learning processes. In particular, we show that well beyond the instability region, full coordination is still globally stochastically stable, however equilibrium selection processes with low stochasticity (e.g. best response) or strong memory effects (e.g. reinforcement learning) can be prevented from achieving full coordination by being trapped into a large (exponentially in number of agents) set of locally stable Nash equilibria at low/medium coordination (inefficient equilibria). These results should be useful to allow a better understanding of general coordination problems on complex networks.
Network motifs are small building blocks of complex networks. Statistically significant motifs often perform network-specific functions. However, the precise nature of the connection between motifs and the global structure and function of networks remains elusive. Here we show that the global structure of some real networks is statistically determined by the probability of connections within motifs of size at most 3, once this probability accounts for node degrees. The connectivity profiles of node triples in these networks capture all their local and global properties. This finding impacts methods relying on motif statistical significance, and enriches our understanding of the elementary forces that shape the structure of complex networks.
320 - Ming Li , Run-Ran Liu , Dan Peng 2016
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا