Do you want to publish a course? Click here

Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

204   0   0.0 ( 0 )
 Added by Michiaki Mori
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.



rate research

Read More

The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer transverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
Direct laser acceleration (DLA) of electrons in a plasma of near critical electron density (NCD) and associated synchrotron-like radiation are discussed for moderate relativistic laser intensity (the normalized laser amplitude $a_0$ $leq$ 4.3) and ps-long pulse. This regime is typical for kJ PW-class laser facilities designed for high energy density research. Currently, in experiments at the PHELX laser it was demonstrated that interaction of 10$^{19}$ W/cm$^{2}$ sub-ps laser pulse with sub-mm long NCD plasma results in generation of high-current well-directed super-ponderomotive electrons with effective temperature that is 10$times$ higher than the ponderomotive potential [O. Rosmej et al., PPCF 62, 115024 (2020)]. Three-dimensional Particle-In-Cell simulations provided a good agreement with the measured electron energy distribution and were used in the current work to study synchrotron radiation of the DLA accelerated electrons. The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultra-high photon number of 7$times$10$^{11}$ in the 1-30 keV photon energy range at the focused laser energy of 20 J. Numerical simulations of a betatron x-ray phasecontrast imaging based on the DLA process for the parameters of a PHELIX laser is presented. The results are of interest for applications in high energy density (HED) experiments, which require a picosecond x-ray pulse and a high photon flux.
The interaction of dense plasmas with an intense laser under a strong external magnetic field has been investigated. When the cyclotron frequency for the ambient magnetic field is higher than the laser frequency, the lasers electromagnetic field is converted to the whistler mode that propagates along the field line. Because of the nature of the whistler wave, the laser light penetrates into dense plasmas with no cutoff density, and produces superthermal electrons through cyclotron resonance. It is found that the cyclotron resonance absorption occurs effectively under the broadened conditions, or a wider range of the external field, which is caused by the presence of relativistic electrons accelerated by the laser field. The upper limit of the ambient field for the resonance increases in proportion to the square root of the relativistic laser intensity. The propagation of a large-amplitude whistler wave could raise the possibility for plasma heating and particle acceleration deep inside dense plasmas.
The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. And the SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا