Do you want to publish a course? Click here

Scintillation counter with MRS APD light readout

65   0   0.0 ( 0 )
 Added by Kirill Voloshin
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure), operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10^{-2} Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3 kUSD/m^2.



rate research

Read More

A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.
121 - T. Lux , O. Ballester , J. Illa 2011
Detectors with an electroluminesence readout show an excellence performance in respect of energy resolution making them interesting for various applications as X-ray detection, double beta and dark matter experiments, Compton and gamma cameras, etc. In the following the study of a readout based on avalanche photo diodes to detect directly the VUV photons is presented. Results of measurements with 5 APDs in xenon at pressures between 1 and 1.65 bar are shown indicating that such a readout can provide excellent energy and a moderate position resolution.
CALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the R3B calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.
We have built a gas-phase argon ionization detector to measure small nuclear recoil energies (< 10 keVee). In this paper, we describe the detector response to X-ray and gamma calibration sources, including analysis of pulse shapes, software triggers, optimization of gas content, and energy- and position-dependence of the signal. We compare our experimental results against simulation using a 5.9-keV X-ray source, as well as higher-energy gamma sources up to 1332 keV. We conclude with a description of the detector, DAQ, and software settings optimized for a measurement of the low-energy nuclear quenching factor in gaseous argon. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Funded by Lab-wide LDRD. LLNL-JRNL-415990-DRAFT.
High-time-resolution counters based on plastic scintillator with silicon photomultiplier (SiPM) readout have been developed for applications to high energy physics experiments for which relatively large-sized counters are required. We have studied counter sizes up to $120times40times5$ mm^3 with series connection of multiple SiPMs to increase the sensitive area and thus achieve better time resolution. A readout scheme with analog shaping and digital waveform analysis is optimized to achieve the highest time resolution. The timing performance is measured using electrons from a Sr-90 radioactive source, comparing different scintillators, counter dimensions, and types of near-ultraviolet sensitive SiPMs. As a result, a resolution of $sigma =42 pm 2$ ps at 1 MeV energy deposition is obtained for counter size $60times 30 times 5$ mm^3 with three SiPMs ($3times3$ mm^2 each) at each end of the scintillator. The time resolution improves with the number of photons detected by the SiPMs. The SiPMs from Hamamatsu Photonics give the best time resolution because of their high photon detection efficiency in the near-ultraviolet region. Further improvement is possible by increasing the number of SiPMs attached to the scintillator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا