Do you want to publish a course? Click here

Development of High Precision Timing Counter Based on Plastic Scintillator with SiPM Readout

146   0   0.0 ( 0 )
 Added by Yusuke Uchiyama
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-time-resolution counters based on plastic scintillator with silicon photomultiplier (SiPM) readout have been developed for applications to high energy physics experiments for which relatively large-sized counters are required. We have studied counter sizes up to $120times40times5$ mm^3 with series connection of multiple SiPMs to increase the sensitive area and thus achieve better time resolution. A readout scheme with analog shaping and digital waveform analysis is optimized to achieve the highest time resolution. The timing performance is measured using electrons from a Sr-90 radioactive source, comparing different scintillators, counter dimensions, and types of near-ultraviolet sensitive SiPMs. As a result, a resolution of $sigma =42 pm 2$ ps at 1 MeV energy deposition is obtained for counter size $60times 30 times 5$ mm^3 with three SiPMs ($3times3$ mm^2 each) at each end of the scintillator. The time resolution improves with the number of photons detected by the SiPMs. The SiPMs from Hamamatsu Photonics give the best time resolution because of their high photon detection efficiency in the near-ultraviolet region. Further improvement is possible by increasing the number of SiPMs attached to the scintillator.



rate research

Read More

This paper discusses the effects of radiation damage to SiPMs on the performances of plastic scintillator counters with series-connected SiPM readout, focusing on timing measurements. The performances of a counter composed of a $120 times 40 times5~mathrm{mm}^3$ scintillator tile read out by two sets of six SiPMs from AdvanSiD connected in series attached on the short sides are presented, for different combinations of SiPMs at various levels of irradiation. Firstly, six SiPMs were equally irradiated with electrons from $^{90}$Sr sources up to a fluence of $Phi_mathrm{e^-}approx 3 times 10^{12}~mathrm{cm}^{-2}$. The timing resolution of the counter gradually deteriorated by the increase in dark current. The dark current and the deterioration were reduced when the counter was cooled from 30$^circ$C to 10$^circ$C. Secondly, 33 SiPMs were irradiated with reactor neutrons. The characteristics of counters read out by series-connected SiPMs with non-uniform damage levels, were investigated. The signal pulse height, the time response, and the timing resolution depend on the hit position in the counter, when SiPMs irradiation is not uniform.
763 - M.Danilov 2007
The CALICE collaboration is presently constructing a test hadron calorimeter (HCAL) with 7620 scintillator tiles read out by novel photo-detectors - Silicon Photomultipliers (SiPMs). This prototype is the first device which uses SiPMs on a large scal e. We present the design of the HCAL and report on measured properties of more than 10 thousand SiPMs. We discuss the SiPM efficiency, gain, cross-talk, and noise rate dependence on bias voltage and temperature, including the spread in these parameters. We analyze the reasons for SiPM rejection and present the results of the long term stability studies. The first measurements of the SiPM radiation hardness are presented. We compare properties of SiPM with the properties of similar devices, MRS APD and MPPC. A possibility to make the tiles thinner and to read them out without WLS fibers has been studied.
A plastic scintillator bar with dimensions 300 cm x 2.5 cm x 11 cm was exposed to a focused muon beam to study its light yield and timing characteristics as a function of position and angle of incidence. The scintillating light was read out at both ends by photomultiplier tubes whose pulse shapes were recorded by waveform digitizers. Results obtained with the WAVECATCHER and SAMPIC digitizers are analyzed and compared. A discussion of the various factors affecting the timing resolution is presented. Prospects for applications of plastic scintillator technology in large-scale particle physics detectors with timing resolution around 100 ps are provided in light of the results.
The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the $e^+$ in searching for the decay $mu^+ rightarrow e^+gamma$. It is part of a magnetic spectrometer with the $mu^+$ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. The design criteria, the obtained performances and the commissioning of the detector are presented herein.
In recent years, SiPM photoelectric devices have drawn much attention in the domain of time-of-flight-based positron emission tomography (TOF-PET). Using them to construct PET detectors with excellent coincidence time resolution (CTR) is always one of research focus. In this paper, a SiPM readout pre-amplifier based on common-base current amplifier structure followed by a Pole-Zero (PZ) compensation network is constructed, and the main factors that affect the timing performance of the PET detector are investigated. By experimental measurement, we found that the CTR is heavily related to the bandwidth of the amplifier, bias voltage of SiPM, comparator threshold, and PZ network parameter. The test setup has two detectors, one with LYSO crystal (3 mm 3 mm 10 mm) coupled with a Hamamatsu SiPM (S12642-0404), and the other with LaBr3 coupled to a PMT-R9800. After the optimization of the readout circuit with related factors, the CTR between the two detectors is measured as 266ps FWHM. The test result is a helpful guideline for the readout ASIC chip design in our next step.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا