We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals. The crystals are spatially homogeneously excited, and probed by measuring reflectivity over an octave in frequency (including the telecom range) as a function of time. After 300 fs, the complete stop band has shifted to higher frequencies as a result of optically excited free carriers. The switched state relaxes quickly with a time constant of 18 ps. We present a quantitative analysis of switched spectra with theory for finite photonic crystals. The induced changes in refractive index are well described by a Drude model with a carrier relaxation time of 10 fs. We briefly discuss possible applications of high-repetition rate switching of photonic crystal cavities.
We present ultrafast optical switching experiments on 3D photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic band gap is predicted. We find good experimental switching conditions for free-carrier plasma frequencies between 0.3 and 0.7 times the optical frequency: we thus observe a large frequency shift of up to D omega/omega= 1.5% of all spectral features including the peak that corresponds to the photonic band gap. We deduce a corresponding large refractive index change of Dn_Si/n_Si= 2.0% and an induced absorption length that is longer than the sample thickness. We observe a fast decay time of 21 ps, which implies that switching could potentially be repeated at GHz rates. Such a high switching rate is relevant to future switching and modulation applications.
Simulation of fermionic relativistic physics (such as Dirac and Weyl points) has led the dicovery of versatile and exotic phenomena in photonics, of which the optical-frequency realization is, however, still a challenging aim. Here we discover that the commonly-used woodpile photonic crystals for optical-frequency applications host novel fermionic relativistic degeneracies: a Dirac linenode and a topological quadratic degeneracy point, as {em guaranteed} by the nonsymmorphic crystalline symmetry. By reducing the space symmetry, type-II Dirac/Weyl points emerge as the descendants of the quadratic degeneracy point. These exotic optical waves mimicking the physics of unconventional fermionic relativistic waves and hosting anomalous optical properties in subwavelength, all-dielectric photonic crystals could open a new avenue for future optical science.
Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO$_{2}$ based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.
We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrodinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.
We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both fs pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21050 cm$^{-1}$. A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than $Delta$R= 0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a 3D Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.
Tijmen G. Euser
,Adriaan J. Molenaar
,J. G. Fleming
.
(2006)
.
"All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals"
.
Tijmen Euser
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا