Do you want to publish a course? Click here

Optical Quadratic and Dirac Points in Woodpile Photonic Crystals

167   0   0.0 ( 0 )
 Added by Hai-Xiao Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulation of fermionic relativistic physics (such as Dirac and Weyl points) has led the dicovery of versatile and exotic phenomena in photonics, of which the optical-frequency realization is, however, still a challenging aim. Here we discover that the commonly-used woodpile photonic crystals for optical-frequency applications host novel fermionic relativistic degeneracies: a Dirac linenode and a topological quadratic degeneracy point, as {em guaranteed} by the nonsymmorphic crystalline symmetry. By reducing the space symmetry, type-II Dirac/Weyl points emerge as the descendants of the quadratic degeneracy point. These exotic optical waves mimicking the physics of unconventional fermionic relativistic waves and hosting anomalous optical properties in subwavelength, all-dielectric photonic crystals could open a new avenue for future optical science.



rate research

Read More

We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals. The crystals are spatially homogeneously excited, and probed by measuring reflectivity over an octave in frequency (including the telecom range) as a function of time. After 300 fs, the complete stop band has shifted to higher frequencies as a result of optically excited free carriers. The switched state relaxes quickly with a time constant of 18 ps. We present a quantitative analysis of switched spectra with theory for finite photonic crystals. The induced changes in refractive index are well described by a Drude model with a carrier relaxation time of 10 fs. We briefly discuss possible applications of high-repetition rate switching of photonic crystal cavities.
We present a physical explanation of Zitterbewegung-like effect near the zero-refractive-index point in a metamaterial slab in this paper. Between the negative and positive refractive index regions centered at the zero-refractive-index point, the transmittance spectrum distribution of the metamaterial slab is asymmetrical. When a symmetrical pulse propagates through the metamaterial slab, its transmitted spectrum becomes asymmetrical due to the asymmetry of the transmittance spectrum of the slab, leading to a transmitted pulse with an asymmetrical temporal shape. The asymmetry manifests a kind of temporally tailed oscillations, i.e., the Zitterbewegung-like effect. Further, the effect of the temporal and spatial widths of pulse, and the thickness of metamaterial slab on the tailed oscillations of the transmitted pulse has also been discussed. Our results agree well with what the other researchers obtained on the strength of relativistic quantum concepts; however, the viewpoint of our analysis is classical and irrelevant to relativistic quantum mechanics.
147 - Qinghua Guo , Oubo You , Biao Yang 2018
Topological phases arise from the elegant mathematical structures imposed by the interplay between symmetry and topology1-5. From gapped topological insulators to gapless semimetals, topological materials in both quantum and classical systems, have grown rapidly in the last decade. Among them, three-dimensional Dirac semimetal lies at the topological phase transition point between various topological phases. It shares multiple exotic topological features with other topological materials, such as Fermi arcs and chiral anomaly with Weyl semimetals30, spin-dependent surface states with topological insulators29. In spite of the important role it plays in topological physics, no experimental observation of three-dimension Dirac points has been reported in classical systems so far. Here, we experimentally demonstrate three-dimension photonic Dirac points in an elaborately designed photonic metamaterial, in which two symmetrically placed Dirac points are stabilized by electromagnetic duality symmetry31. Spin-polarized surface arcs (counterparts of Fermi arcs in electronic systems) are demonstrated, which paves the way towards spin-multiplexed topological surface wave propagation. Closely linked to other exotic states through topological phase transitions, our system offers an effective medium platform for topological photonics.
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points without structure designs. The topological transition from two Dirac points to four Weyl points can be clearly observed by tuning the twist angle between layers. Besides, on the interface between the photonic type-II Weyl material and air, gappless surface states have also been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points at the same frequency would transform into the non-ideal ones, and exhibit topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic Weyl points or other semimetal phases by utilizing naturally anisotropic materials.
Weyl points are point degeneracies that occur in momentum space of periodic materials, and are associated with a quantized topological charge. We experimentally observe in a 3D micro-printed photonic crystal that a charge-2 Weyl point can be split into two charge-1 Weyl points as the protecting symmetry of the original charge-2 Weyl point is broken. Moreover, we use a theoretical analysis to confirm where the charge-1 Weyl points move within the Brillouin zone as the strength of the symmetry breaking increases, and confirm it in experiments using Fourier-transform infrared spectrometry. This micro-scale observation and control of Weyl points is important for realizing robust topological devices in the near-infrared.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا