No Arabic abstract
We analyze the stability of the networks giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.
A number of recent works have concentrated on a few statistical properties of complex networks, such as the clustering, the right-skewed degree distribution and the community, which are common to many real world networks. In this paper, we address the hierarchy property sharing among a large amount of networks. Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known. We also apply it to a Mathematicians collaboration network and the protein interaction network of Yeast. The method can detect significantly hierarchical structures in these networks.
The goals of this paper are to present criteria, that allow to a priori quantify the attack stability of real world correlated networks of finite size and to check how these criteria correspond to analytic results available for infinite uncorrelated networks. As a case study, we consider public transportation networks (PTN) of several major cities of the world. To analyze their resilience against attacks either the network nodes or edges are removed in specific sequences (attack scenarios). During each scenario the size S(c) of the largest remaining network component is observed as function of the removed share c of nodes or edges. To quantify the PTN stability with respect to different attack scenarios we use the area below the curve described by S(c) for c in [0,1] recently introduced (Schneider, C. M, et al., PNAS 108 (2011) 3838) as a numerical measure of network robustness. This measure captures the network reaction over the whole attack sequence. We present results of the analysis of PTN stability against node and link-targeted attacks.
This paper explores a variety of strategies for understanding the formation, structure, efficiency and vulnerability of water distribution networks. Water supply systems are studied as spatially organized networks for which the practical applications of abstract evaluation methods are critically evaluated. Empirical data from benchmark networks are used to study the interplay between network structure and operational efficiency, reliability and robustness. Structural measurements are undertaken to quantify properties such as redundancy and optimal-connectivity, herein proposed as constraints in network design optimization problems. The role of the supply-demand structure towards system efficiency is studied and an assessment of the vulnerability to failures based on the disconnection of nodes from the source(s) is undertaken. The absence of conventional degree-based hubs (observed through uncorrelated non-heterogeneous sparse topologies) prompts an alternative approach to studying structural vulnerability based on the identification of network cut-sets and optimal connectivity invariants. A discussion on the scope, limitations and possible future directions of this research is provided.
With vast amounts of high-quality information at our fingertips, how is it possible that many people believe that the Earth is flat and vaccination harmful? Motivated by this question, we quantify the implications of an opinion formation mechanism whereby an uninformed observer gradually forms opinions about a world composed of subjects interrelated by a signed network of mutual trust and distrust. We show numerically and analytically that the observers resulting opinions are highly inconsistent (they tend to be independent of the observers initial opinions) and unstable (they exhibit wide stochastic variations). Opinion inconsistency and instability increase with the world complexity represented by the number of subjects, which can be prevented by suitably expanding the observers initial amount of information. Our findings imply that even an individual who initially trusts credible information sources may end up trusting the deceptive ones if at least a small number of trust relations exist between the credible and deceptive sources.
Percolation theory is an approach to study vulnerability of a system. We develop analytical framework and analyze percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of $n$ classic ErdH{o}s-R{e}nyi (ER) networks, where each network depends on the same number $m$ of other networks, i.e., a random regular network of interdependent ER networks. In contrast to a emph{treelike} NetONet in which the size of the largest connected cluster (mutual component) depends on $n$, the loops in the RR NetONet cause the largest connected cluster to depend only on $m$. We also analyzed the extremely vulnerable feedback condition of coupling. In the case of ER networks, the NetONet only exhibits two phases, a second order phase transition and collapse, and there is no first phase transition regime unlike the no feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when $q$ is large and second order phase transition when $q$ is small. Our results can help in designing robust interdependent systems.