Do you want to publish a course? Click here

Neutral and ionic dopants in helium clusters: interaction forces for the $Li_2(a^3Sigma_u^+)-He$ and $Li_2^+(X^2Sigma_g^+)-He$

147   0   0.0 ( 0 )
 Added by Enrico Bodo
 Publication date 2005
  fields Physics
and research's language is English
 Authors E. Bodo




Ask ChatGPT about the research

The potential energy surface (PES) describing the interactions between $mathrm{Li_{2}(^{1}Sigma_{u}^{+})}$ and $mathrm{^{4}He}$ and an extensive study of the energies and structures of a set of small clusters, $mathrm{Li_{2}(He)_{n}}$, have been presented by us in a previous series of publications [1-3]. In the present work we want to extend the same analysis to the case of the excited $mathrm{Li_{2}}(a^{3}Sigma_{u}^{+})$ and of the ionized Li$_{2}^{+}(X^{2}Sigma_{g}^{+})$ moiety. We thus show here calculated interaction potentials for the two title systems and the corresponding fitting of the computed points. For both surfaces the MP4 method with cc-pV5Z basis sets has been used to generate an extensive range of radial/angular coordinates of the two dimensional PESs which describe rigid rotor molecular dopants interacting with one He partner.



rate research

Read More

A structural study of the smaller Li$^+$He$_n$ clusters with $nle30$ has been carried out using different theoretical methods. The structures and the energetics of the clusters have been obtained using both classical energy minimization methods and quantum Diffusion Monte Carlo. The total interaction acting within the clusters has been obtained as a sum of pairwise potentials: Li$^+$-He and He-He. This approximation had been shown in our earlier study cite{8} to give substantially correct results for energies and geometries once compared to full ab-initio calculations. The general features of the spatial structures, and their energetics, are discussed in details for the clusters up to $n=30$ and the first solvation shell is shown to be essentially completed by the first ten helium atoms.
Here, we report the observation of electron transfer mediated decay (ETMD) involving Mg clusters embedded in helium nanodroplets which is initiated by the ionization of helium followed by removal of two electrons from the Mg clusters of which one is transferred to the He environment neutralizing it while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. The photoelectron spectrum reveals a low energy ETMD peak. For Mg clusters larger than 5 atoms we observe stable doubly-ionized clusters. We argue that ETMD provides a new pathway to the formation of doubly-ionized cold species.
We have studied complexes of gold atoms and imidazole (C$_3$N$_2$H$_4$, abbreviated Im) produced in helium nanodroplets. Following the ionization of the doped droplets we detect a broad range of different Au$_m$Im$_n^+$ complexes, however we find that for specific values of $m$ certain $n$ are magic and thus particularly abundant. Our density functional theory calculations indicate that these abundant clusters sizes are partially the result of particularly stable complexes, e.g. AuIm$_2^+$, and partially due to a transition in fragmentation patterns from the loss of neutral imidazole molecules for large systems to the loss of neutral gold atoms for smaller systems.
We have selected and spatially separated the two conformers of 3-aminophenol (C$_6$H$_7$NO) present in a molecular beam. Analogous to the separation of ions based on their mass-to-charge ratios in a quadrupole mass filter, the neutral conformers are separated based on their different mass-to-dipole-moment ratios in an ac electric quadrupole selector. For a given ac frequency, the individual conformers experience different focusing forces, resulting in different transmissions through the selector. These experiments demonstrate that conformer-selected samples of large molecules can be prepared, offering new possibilities for the study of gas-phase biomolecules.
Motivated by recent experiments, we study normal-phase rotating He-3 droplets within Density Functional Theory in a semi-classical approach. The sequence of rotating droplet shapes as a function of angular momentum are found to agree with those of rotating classical droplets, evolving from axisymmetric oblate to triaxial prolate to two-lobed shapes as the angular momentum of the droplet increases. Our results, which are obtained for droplets of nanoscopic size, are rescaled to the mesoscopic size characterizing ongoing experimental measurements, allowing for a direct comparison of shapes. The stability curve in the angular velocity-angular momentum plane shows small deviations from the classical rotating drop model predictions, whose magnitude increases with angular momentum. We attribute these deviations to effects not included in the simplified classical model description of a rotating fluid held together by surface tension, i.e. to surface diffuseness, curvature and finite compressibility, and to quantum effects associated with deformation of the He-3 Fermi surface. The influence of all these effects is expected to diminish as the droplet size increases, making the classical rotating droplet model a quite accurate representation of He-3 rotation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا