Do you want to publish a course? Click here

A selector for structural isomers of neutral molecules

178   0   0.0 ( 0 )
 Added by Jochen K\\\"upper
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have selected and spatially separated the two conformers of 3-aminophenol (C$_6$H$_7$NO) present in a molecular beam. Analogous to the separation of ions based on their mass-to-charge ratios in a quadrupole mass filter, the neutral conformers are separated based on their different mass-to-dipole-moment ratios in an ac electric quadrupole selector. For a given ac frequency, the individual conformers experience different focusing forces, resulting in different transmissions through the selector. These experiments demonstrate that conformer-selected samples of large molecules can be prepared, offering new possibilities for the study of gas-phase biomolecules.



rate research

Read More

We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material; it has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow to merging of two beams of neutral polar molecules.
The BOUND program calculates the bound states of a complex formed from two interacting particles using coupled-channel methods. It is particularly suitable for the bound states of atom-molecule and molecule-molecule Van der Waals complexes and for the near-threshold bound states that are important in ultracold physics. It uses a basis set for all degrees of freedom except $R$, the separation of the centres of mass of the two particles. The Schrodinger equation is expressed as a set of coupled equations in $R$. Solutions of the coupled equations are propagated outwards from the classically forbidden region at short range and inwards from the classically forbidden region at long range, and matched at a point in the central region. Built-in coupling cases include atom + rigid linear molecule, atom + vibrating diatom, atom + rigid symmetric top, atom + asymmetric or spherical top, rigid diatom + rigid diatom, and rigid diatom + asymmetric top. Both programs provide an interface for plug-in routines to specify coupling cases (Hamiltonians and basis sets) that are not built in. With appropriate plug-in routines, BOUND can take account of the effects of external electric, magnetic and electromagnetic fields, locating bound-state energies at fixed values of the fields. The related program FIELD uses the same plug-in routines and locates values of the fields where bound states exist at a specified energy. As a special case, it can locate values of the external field where bound states cross scattering thresholds and produce zero-energy Feshbach resonances. Plug-in routines are supplied to handle the bound states of a pair of alkali-metal atoms with hyperfine structure in an applied magnetic field.
A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are selected and used as targets for 3-dimensional alignment and orientation. The alignment is induced in the adiabatic regime with an elliptically polarized, intense laser pulse and the orientation is induced by the combined action of the laser pulse and a weak static electric field. We show that the degree of 3-dimensional alignment and orientation is strongly enhanced when rotationally state-selected molecules, rather than molecules in the original molecular beam, are used as targets.
A strong inhomogeneous static electric field is used to spatially disperse a supersonic beam of polar molecules, according to their quantum state. We show that the molecules residing in the lowest-lying rotational states can be selected and used as targets for further experiments. As an illustration, we demonstrate an unprecedented degree of laser-induced 1D alignment $(<cos^2theta_{2D}>=0.97)$ and strong orientation of state-selected iodobenzene molecules. This method should enable experiments on pure samples of polar molecules in their rotational ground state, offering new opportunities in molecular science.
123 - O. Novotny , S. Allgeier , C. Enss 2015
We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from $Eapprox13$ to 150 keV. For atoms we obtained absolute energy resolutions down to $Delta E approx 120$ eV and relative energy resolutions down to $Delta E/Eapprox10^{-3}$. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا