No Arabic abstract
We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).
To cope with the harsh environment foreseen at the high luminosity conditions of HL- LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 {mu}m thick n-on-p sensors with active edge, a second one composed of 100 and 130 {mu}m thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY and their performance before and after irradiation will be presented.
Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.
The foreseen luminosity upgrade for the LHC (a factor of 5-10 more in peak luminosity by 2021) poses serious constraints on the technology for the ATLAS tracker in this High Luminosity era (HL-LHC). In fact, such luminosity increase leads to increased occupancy and radiation damage of the tracking detectors. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project was established comprising 17 institutes and more than 80 scientists. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edge designs to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. In the following I will present results from the group, concerning mainly irradiated-devices performance, together with studies for new sensors, including detailed simulations.
The ATLAS hadronic Tile Calorimeter will undergo major upgrades to the on- and off-detector electronics in preparation for the High Luminosity program of the Large Hadron Collider (HL-LHC) in 2026, so that the system can cope with the HL-LHC increased radiation levels and out-of-time pileup. The on-detector electronics of the upgraded system will continuously digitize and transmit all photo-multiplier signals to the off-detector systems at a 40 MHz rate. The off-detector electronics will store the data in pipeline buffers, produce digital hadronic tower sums for the ATLAS Level-0 trigger system, and read out selected events. The modular on-detector electronics feature radiation-tolerant commercial off-the-shelf components and redundant design to minimize single points of failure. The timing, control and communication interface with the off-detector electronics is implemented with modern Field Programmable Gate Arrays and high speed fibre optic links running up to 9.6 Gbps.
Planar silicon pixel sensors with modified n$^+$-implantation shapes based on the IBL pixel sensor were designed in Dortmund. The sensors with a pixel size of $250,mu$m $times$ $50,mu$m are produced in n$^+$-in-n sensor technology. The charge collection efficiency should improve with electrical field strength maxima created by the different n$^+$-implantation shapes. Therefore, higher particle detection efficiencies at lower bias voltages could be achieved. The modified pixel designs and the IBL standard design are placed on one sensor to test and compare the designs. The sensor can be read out with the FE-I4 readout chip. At the iWoRiD 2018, measurements of sensors irradiated with protons and neutrons respectively at different facilities were presented and showed incongruent results. Unintended annealing during irradiation was considered as an explanation for the observed differences in the hit detection efficiency for two neutron irradiated sensors. This hypothesis will be examined and confirmed in this work, presenting first annealing studies of sensors irradiated with neutrons in Ljubljana.