Do you want to publish a course? Click here

Ion-induced effects in GEM & GEM/MHSP gaseous photomultipliers for the UV and the visible spectral range

182   0   0.0 ( 0 )
 Added by Alexey Lyashenko
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the progress in the study of cascaded GEM and GEM/MHSP gas avalanche photomultipliers operating at atmospheric pressure, with CsI and bialkali photocathodes. They have single-photon sensitivity, ns time resolution and good localization properties. We summarize operational aspects and results, with the highlight of a high-gain stable gated operation of a visible-light device. Of particular importance are the results of a recent ion-backflow reduction study in different cascaded multipliers, affecting the detectors stability and the photocathodes liftime. We report on the significant progress in ion-blocking and provide first results on bialkali-photocathode aging under gas multiplication.



rate research

Read More

Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.
A novel concept for ion blocking in gas-avalanche detectors was developed, comprising cascaded micro-hole electron multipliers with patterned electrodes for ion defocusing. This leads to ion blocking at the 10^{-4} level, in DC mode, in operation conditions adequate for TPCs and for gaseous photomultipliers. The concept was validated in a cascaded visible-sensitive gas avalanche photomultiplier operating at atmospheric pressure of Ar/CH_{4} (95/5) with a bi-alkali photocathode. While in previous works high gain, in excess of 10^{5}, was reached only in a pulse-gated cascaded-GEM gaseous photomultiplier, the present device yielded, for the first time, similar gain in DC mode. We describe shortly the physical processes involved in the charge transport within gaseous photomultipliers and the ion blocking method. We present results of ion backflow fraction and of electron multiplication in cascaded patterned-electrode gaseous photomultiplier with K-Cs-Sb, Na-K-Sb and Cs-Sb visible-sensitive photocathodes, operated in DC mode.
In this work, we have tried to develop a detailed understanding of the physical processes occurring in those variants of Micro Pattern Gas Detectors (MPGDs) that share micro hole and micro strip geometry, like GEM, MHSP and MSGC etc. Some of the important and fundamental characteristics of these detectors such as gain, transparency, efficiency and their operational dependence on different device parameters have been estimated following detailed numerical simulation of the detector dynamics. We have used a relatively new simulation framework developed especially for the MPGDs that combines packages such as GARFIELD, neBEM, MAGBOLTZ and HEED. The results compare closely with the available experimental data. This suggests the efficacy of the framework to model the intricacies of these micro-structured detectors in addition to providing insight into their inherent complex dynamical processes.
In this paper we present irradiation measurements performed to select a transparent anode substrate that best meets the requirements of an optical readout for a novel detector, the LaGEMPix. The modification of the optical properties of the material due to proton irradiation were studied in soda-lime, fused quartz and fused silica glasses coated with an Indium Tin Oxide layer. The irradiations were performed using the research Beam Transfer Line (BTL) of the IBA Cyclone 18 MeV cyclotron of the Bern University Hospital (Inselspital). We recorded visible scintillation light generated by proton irradiation in the soda-lime and fused quartz samples. We also investigated the darkening of these three glasses and observed radiation-induced colour centres in the soda-lime glass sample. The optical transmission spectra of the samples were measured before and after irradiation. Reductions of 45%, 1% and 0.4% were observed for soda-lime glass, fused quartz and fused silica, respectively (with an associated error of 0.25%). We conclude that the best option for our specific application is the fused silica substrate, which will be the transparent anode for the next generation of the LaGEMPix detector.
443 - A. Tripathy , P. K Sahu , S. Swain 2021
A systematic study is performed to measure the ion backflow fraction of the GEM detectors. The effects of different voltage configurations and Ar/CO_2 gas mixtures, in ratios of 70:30, 80:20 and 90:10, on positive ion fraction are investigated in detail. Moreover, a comparative study is performed between single and quadruple GEM detectors.The ion current with detector effective gain is measured with various field configurations and with three proportions of gas mixtures. The ion backflow fraction for the GEM is substantially reduced with the lower drift field. A minimum ion backflow fraction of 18 % is achieved in the single GEM detector with Ar/CO_2 80:20 gas mixture, however, a minimum ion backflow fraction of 3.5 %, 3.0%, and 3.8 % are obtained for a drift field of 0.1kV/cm with Ar/CO_2 70:30, 80:20 and 90:10 gas mixtures, respectively for quadrupole GEM detector. Similar values of effective gain and ion backflow fraction have been found by calculating the current from pulse height spectrum method, obtained in the Multi Channel Analyser.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا