Do you want to publish a course? Click here

Observation of Single-Photon Switching

53   0   0.0 ( 0 )
 Added by Ite Yu
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental demonstration of single-photon switching in laser-cooled $^{87}$Rb atoms. A resonant probe pulse with an energy per unit area of one photon per $lambda^2/2pi$ propagates through the optically thick atoms. Its energy transmittance is greater than 63% or loss is less than $e^{-1}$ due to the effect of electromagnetically induced transparency. In the presence of a switching pulse with an energy per unit area of 1.4 photons per $lambda^2/2pi$, the energy transmittance of the same probe pulse becomes less than 37% or $e^{-1}$. This substantial reduction of the probe transmittance caused by single switching photons has potential applications in single-photon-level nonlinear optics and the manipulation of quantum information.



rate research

Read More

We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules which are magnetically trapped. We discuss the application of this new approach to the cooling of hydrogenic atoms for the purpose of precision spectroscopy and fundamental tests.
We demonstrate a single-photon stored-light interferometer, where a photon is stored in a laser-cooled atomic ensemble in the form of a Rydberg polariton with a spatial extent of $10 times1times1mu m^3$. The photon is subject to a Ramsey sequence, i.e. `split into a superposition of two paths. After a delay of up to 450 ns, the two paths are recombined to give an output dependent on their relative phase. The superposition time of 450 ns is equivalent to a free-space propagation distance of 135 m. We show that the interferometer fringes are sensitive to external fields, and suggest that stored-light interferometry could be useful for localized sensing applications.
180 - Shaojie Liu , Xing Lin , Feng Liu 2020
The second-order photon correlation function is of great importance in quantum optics which is typically measured with the Hanbury Brown and Twiss interferometer which employs a pair of single-photon detectors and a dual-channel time acquisition module. Here we demonstrate a new method to measure and extract the second-order correlation function with a standard single-photon avalanche photodiode (dead-time = 22 ns) and a single-channel time acquisition module. This is realized by shifting the informative coincidence counts near the zero-time delay to a time window which is not obliterated by the dead-time and after-pulse of detection system. The new scheme is verified by measuring the second-order correlation from a single colloidal nanocrystal. Photon antibunching is unambiguously observed and agrees well with the result measured using the standard HBT setup. Our scheme simplifies the higher-order correlation technique and might be favored in cost-sensitive circumstances.
We report experimental observations of correlated-photon statistics in the single-photon detection rate. The usual quantum interference in a two-photon polarization interferometer always accompanies a dip in the single detector counting rate, regardless of whether a dip or peak is seen in the coincidence rate. This effect is explained by taking into account all possible photon number states that reach the detector, rather than considering just the state post-selected by the coincidence measurement. We also report an interferometeric scheme in which the interference peak or dip in coincidence corresponds directly to a peak or dip in the single-photon detection rate.
We offer a theoretical and experimental study of the single-photon photoionization of Ne III. The high photon flux and the high-resolution capabilities of the Advanced Light Source at the LBNL were employed to measure absolute photoionization cross sections. The resulting spectrum has been benchmarked against high accuracy relativistic Breit-Pauli $R$-matrix calculations. A large close-coupling wave function expansion which comprises up to 58 fine-structure levels of the residual ion Ne IV of configurations $2s^22p^3$, $2s2p^4$, $2p^5$, $2s^22p^23s$, $2s^22p^23p$ and $2s^22p^23d$ was included. A complete identification of the measured features was achieved by considering seven low-lying levels of Ne III. We found that the photoionization cross-section ($sigma_{PI}$) exhibits the presence of prominent resonances in the low-energy region near the ionization thresholds that correspond to low-lying levels. These include high-peak narrow resonances with almost zero background introduced by relativistic effects. However, there does not exist a significant contribution to $sigma_{PI}$ from relativistic effects at the high-energy interval of the present study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا