Do you want to publish a course? Click here

Single-photon photoionization of oxygen-like Ne III

66   0   0.0 ( 0 )
 Added by Guillermo Hinojosa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We offer a theoretical and experimental study of the single-photon photoionization of Ne III. The high photon flux and the high-resolution capabilities of the Advanced Light Source at the LBNL were employed to measure absolute photoionization cross sections. The resulting spectrum has been benchmarked against high accuracy relativistic Breit-Pauli $R$-matrix calculations. A large close-coupling wave function expansion which comprises up to 58 fine-structure levels of the residual ion Ne IV of configurations $2s^22p^3$, $2s2p^4$, $2p^5$, $2s^22p^23s$, $2s^22p^23p$ and $2s^22p^23d$ was included. A complete identification of the measured features was achieved by considering seven low-lying levels of Ne III. We found that the photoionization cross-section ($sigma_{PI}$) exhibits the presence of prominent resonances in the low-energy region near the ionization thresholds that correspond to low-lying levels. These include high-peak narrow resonances with almost zero background introduced by relativistic effects. However, there does not exist a significant contribution to $sigma_{PI}$ from relativistic effects at the high-energy interval of the present study.



rate research

Read More

Single photoionization cross sections for Kr-like Rb$^+$ ions are reported in the energy (wavelength) range 22 eV (564 AA) to 46 eV (270 AA). Theoretical cross section calculations for this {it trans}-Fe element are compared with measurements from the ASTRID radiation facility in Aarhus, Denmark and the dual laser plasma (DLP) technique, at respectively 40 meV and 35 meV FWHM energy resolution. In the photon energy region 22 - 32 eV the spectrum is dominated by excitation autoionizing resonance states. Above 32 eV the cross section exhibit classic Fano window resonances features, which are analysed and discussed. Large-scale theoretical photoionization cross-section calculations, performed using a Dirac Coulomb $R$-matrix approximation are bench marked against these high resolution experimental results. Comparison of the theoretical work with the experimental studies allowed the identification of resonance features and their parameters in the spectra in addition to contributions from excited metastable states of the Rb$^+$ ions.
Measurements of the single photoionization cross section of Cu-like Zn$^+$ ions are reported in the energy (wavelength) range 17.5 eV (709 AA) to 90 eV (138 AA). The measurements on this {it trans}-Fe element were performed at the Advanced Light Source synchrotron radiation facility in Berkeley, California at a photon energy resolution of 17 meV using the photon-ion merged-beams end-station. Below 30 eV the spectrum is dominated by excitation autoionizing resonance states. The experimental results are compared with large-scale photoionization cross-section calculations performed using a Dirac-Coulomb $R$-matrix approximation. Comparison are made with previous experimental studies, resonance states are identified and contributions from metastable states of Zn$^+$ determined.
We present $R$-matrix calculations of photoabsorption and photoionization cross sections across the K-edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron orbital bases obtained using a Thomas--Fermi--Dirac statistical model potential. Configuration interaction is considered among all states up to $n=3$. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for modeling of features found in photoionized plasmas.
Photoionization of Kr$^+$ ions was studied in the energy range from 23.3 eV to 39.0 eV at a photon energy resolution of 7.5 meV. Absolute measurements were performed by merging beams of Kr$^+$ ions and of monochromatized synchrotron undulator radiation. Photoionization (PI) of this Br-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Resonance features observed in the experimental spectra are spectroscopically assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are benchmarked against state-of-the-art theoretical cross-section calculations from the Dirac-Coulomb R-matrix method.
Single, double, and triple ionization of the C+ ion by a single photon have been investigated in the energy range 286 to 326 eV around the K-shell single-ionization threshold at an unprecedented level of detail. At energy resolutions as low as 12 meV, corresponding to a resolving power of 24000, natural linewidths of the most prominent resonances could be determined. From the measurement of absolute cross sections, oscillator strengths, Einstein coefficients, multi-electron Auger decay rates and other transition parameters of the main K-shell excitation and decay processes are derived. The cross sections are compared to results of previous theoretical calculations. Mixed levels of agreement are found despite the relatively simple atomic structure of the C+ ion with only 5 electrons. This paper is a follow-up of a previous Letter [Muller et al., Phys. Rev. Lett. 114, 013002 (2015)].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا