Do you want to publish a course? Click here

Exact solutions for equilibrium configurations of charged conducting liquid jets

99   0   0.0 ( 0 )
 Added by Nickolay Zubarev
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

A wide class of exact solutions is obtained for the problem of finding the equilibrium configurations of charged jets of a conducting liquid; these configurations correspond to the finite-amplitude azimuthal deformations of the surface of a round jet. A critical value of the linear electric charge density is determined, for which the jet surface becomes self-intersecting, and the jet splits into two. It exceeds the density value required for the excitation of the linear azimuthal instability of the round jet. Hence, there exists a range of linear charge density values, where our solutions may be stable with respect to small azimuthal perturbations.



rate research

Read More

The problem of determining equilibrium configurations of the free surface of a conducting liquid is considered with allowance for a finite interelectrode distance. The analogy is established between this electrostatic problem and that of finding the profile of a progressive capillary wave on the free surface of a liquid layer of a finite depth, which was solved by Kinnersley. This analogy allowed exact solutions to be obtained for the geometry of liquid electrodes, which expand the existing notions about the possible stationary states of the system.
99 - N. M. Zubarev 2000
The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.
85 - Nikolay M. Zubarev 2004
The dynamics of the development of instability of the free surface of liquid helium, which is charged by electrons localized above it, is studied. It is shown that, if the charge completely screens the electric field above the surface and its magnitude is much larger then the instability threshold, the asymptotic behavior of the system can be described by the well-known 3D Laplacian growth equations. The integrability of these equations in 2D geometry makes it possible to described the evolution of the surface up to the formation of singularities, viz., cuspidal point at which the electric field strength, the velocity of the liquid, and the curvature of its surface assume infinitely large values. The exact solutions obtained for the problem of the electrocapillary wave profile at the boundary of liquid helium indicate the tendency to a charge in the surface topology as a result of formation of charged bubbles.
A relative motion of the normal and superfluid components of Helium II results in Kelvin-Helmholtz instability (KHI) at their common free surface. We found the exact solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two fluids, the dynamics of Helium II free surface allows decoupling of the governing equations with their reduction to the Laplace growth equation which has the infinite number of exact solutions including the formation of sharp cusps at free surface in a finite time.
We present ten new equilibrium solutions to plane Couette flow in small periodic cells at low Reynolds number (Re) and two new traveling-wave solutions. The solutions are continued under changes of Re and spanwise period. We provide a partial classification of the isotropy groups of plane Couette flow and show which kinds of solutions are allowed by each isotropy group. We find two complementary visualizations particularly revealing. Suitably chosen sections of their 3D-physical space velocity fields are helpful in developing physical intuition about coherent structures observed in low Re turbulence. Projections of these solutions and their unstable manifolds from their infinite-dimensional state space onto suitably chosen 2- or 3-dimensional subspaces reveal their interrelations and the role they play in organizing turbulence in wall-bounded shear flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا