No Arabic abstract
The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.
The dynamics of the development of instability of the free surface of liquid helium, which is charged by electrons localized above it, is studied. It is shown that, if the charge completely screens the electric field above the surface and its magnitude is much larger then the instability threshold, the asymptotic behavior of the system can be described by the well-known 3D Laplacian growth equations. The integrability of these equations in 2D geometry makes it possible to described the evolution of the surface up to the formation of singularities, viz., cuspidal point at which the electric field strength, the velocity of the liquid, and the curvature of its surface assume infinitely large values. The exact solutions obtained for the problem of the electrocapillary wave profile at the boundary of liquid helium indicate the tendency to a charge in the surface topology as a result of formation of charged bubbles.
Applying the method of integral estimates to the analysis of three-wave processes we derive the sufficient criteria for the hard loss of stability of the charged plane surface of liquids with different physical properties. The influence of higher-order wave interactions on the instability dynamics is also discussed.
A wide class of exact solutions is obtained for the problem of finding the equilibrium configurations of charged jets of a conducting liquid; these configurations correspond to the finite-amplitude azimuthal deformations of the surface of a round jet. A critical value of the linear electric charge density is determined, for which the jet surface becomes self-intersecting, and the jet splits into two. It exceeds the density value required for the excitation of the linear azimuthal instability of the round jet. Hence, there exists a range of linear charge density values, where our solutions may be stable with respect to small azimuthal perturbations.
A relative motion of the normal and superfluid components of Helium II results in Kelvin-Helmholtz instability (KHI) at their common free surface. We found the exact solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two fluids, the dynamics of Helium II free surface allows decoupling of the governing equations with their reduction to the Laplace growth equation which has the infinite number of exact solutions including the formation of sharp cusps at free surface in a finite time.
We analyze nonlinear dynamics of the Kelvin-Helmholtz quantum instability of the He-II free surface, which evolves during counterpropagation of the normal and superfluid components of liquid helium. It is shown that in the vicinity of the linear stability threshold, the evolution of the boundary is described by the $|phi|^4$ Klein-Gordon equation for the complex amplitude of the excited wave with cubic nonlinearity. It is important that for any ratio of the densities of the helium component, the nonlinearity plays a destabilizing role, accelerating the linear instability evolution of the boundary. The conditions for explosive growth of perturbations of the free surface are formulated using the integral inequality approach. Analogy between the Kelvin-Helmholtz quantum instability and electrohydrodynamic instability of the free surface of liquid helium charged by electrons is considered.