Do you want to publish a course? Click here

Planar LAAPDs: Temperature Dependence, Performance, and Application in Low Energy X-ray Spectroscopy

103   0   0.0 ( 0 )
 Added by Livia Ludhova
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

An experiment measuring the 2S Lamb shift in muonic hydrogen mup is being performed at the Paul Scherrer Institute, Switzerland. It requires small and compact detectors for 1.9 keV x rays (2P-1S transition) with an energy resolution around 25% at 2 keV, a time resolution better than 100 ns, a large solid angle coverage, and insensitivity to a 5 T magnetic field. We have chosen Large Area Avalanche Photodiodes (LAAPDs) from Radiation Monitoring Devices as x-ray detectors, and they were used during the last data taking period in 2003. For x-ray spectroscopy applications, these LAAPDs have to be cooled in order to suppress the dark current noise, hence, a series of tests were performed to choose the optimal operation temperature. Specifically, the temperature dependence of gain, energy resolution, dark current, excess noise factor, and detector response linearity was studied. Finally, details of the LAAPDs application in the muonic hydrogen experiment as well as their response to alpha particles are presented.



rate research

Read More

We have measured the intricate temperature dependence of the Co L2,3 x-ray absorption spectra (2p-3d excitations) of CoO. To allow for accurate total electron yield measurements, the material has been grown in thin film form on a metallic substrate in order to avoid charging problems usually encountered during electron spectroscopic studies on bulk CoO samples. The changes in spectra due to temperature are in good agreement with detailed ligand-field calculations indicating that these changes are mostly due to thermal population of closely lying excited states, originating from degenerate t2g levels lifted by the spin-orbit coupling. Magnetic coupling in the ordered phase, modeled as a mean-field exchange field, mixes in excited states inducing a tetragonal charge density. The spin-orbit coupling induced splitting of the low energy states results in a non-trivial temperature dependence for the magnetic susceptibility.
High-resolution pionic-atom x-ray spectroscopy was performed with an x-ray spectrometer based on a 240-pixel array of superconducting transition-edge-sensor (TES) microcalorimeters at the piM1 beam line of the Paul Scherrer Institute. X-rays emitted by pionic carbon via the 4f->3d transition and the parallel 4d->3p transition were observed with a full-width-at-half-maximum energy resolution of 6.8 eV at 6.4 keV. Measured x-ray energies are consistent with calculated electromagnetic values which considered the strong-interaction effect assessed via the Seki-Masutani potential for the 3p energy level, and favor the electronic population of two filled 1s electrons in the K-shell. Absolute energy calibration with an uncertainty of 0.1 eV was demonstrated under a high-rate hadron beam condition of 1.45 MHz. This is the first application of a TES spectrometer to hadronic-atom x-ray spectroscopy and is an important milestone towards next-generation high-resolution kaonic-atom x-ray spectroscopy.
99 - H. Kersell , P. Chen , H. Martins 2021
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray scattering (GIXS) in gas pressures as high as the multi-Torr regime, while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano- to the meso-scale. The grazing incidence geometry provides tunable depth sensitivity while scattered X-rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and in ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O$_2$ atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent X-ray scattering experiments can greatly benefit from the concepts we present here.
We use narrow spectral lines from the x-ray spectra of various highlycharged ions to measure low-energy tail-like deviations from a Gaussian responsefunction in a microcalorimter x-ray spectrometer with Au absorbers at energiesfrom 650 eV to 3320 eV. We review the literature on low energy tails in othermicrocalorimter x-ray spectrometers and present a model that explains all thereviewed tail fraction measurements. In this model a low energy tail arises fromthe combination of electron escape and energy trapping associated with Bi x-rayabsorbers.
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا