Do you want to publish a course? Click here

Simulation of Special Bubble Detectors for PICASSO

90   0   0.0 ( 0 )
 Added by Marie-Helene Genest
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerized gel. This detection technique is based on the phase transition of superheated droplets at about room temperature and ambient pressure. The phase transition is induced by nuclear recoils when an atomic nucleus in the droplets interacts with incoming subatomic particles. This includes CDM particles candidate as the neutralino (a yet-to-discover particle predicted in extensions of the Standard Model of particle physics). Simulations performed to understand the detector response to neutrons and alpha particles are presented along with corresponding data obtained at the Montreal Laboratory.



rate research

Read More

177 - I. Abt , A. Caldwell , D. Lenz 2010
A new package to simulate the formation of electrical pulses in segmented true-coaxial high purity germanium detectors is presented. The computation of the electric field and weighting potentials inside the detector as well as of the trajectories of the charge carriers is described. In addition, the treatment of bandwidth limitations and noise are discussed. Comparison of simulated to measured pulses, obtained from an 18-fold segmented detector operated inside a cryogenic test facility, are presented.
138 - Ze She , Hao Ma , Weihe Zeng 2021
A Geant4-based simulation framework for rare event searching experiments with germanium detectors named SAGE is presented with details. It is designed for simulating, assessing, analyzing background components and investigating the response of the germanium detectors. The SAGE framework incorporates its experiment-specific geometries and custom attributes, including the event generator, physical lists and output format, to satisfy various simulation objectives. Its docker image has been prepared for virtualizing and distributing the SAGE framework. Deployment a Geant4-based simulation will be convenient under this docker image. The implemented geometries include both the p-type point contact and broad energy germanium detectors with environmental surroundings, and these hierarchical geometries can be easily extended. Users select these custom attributes via the JSON configuration file. The aforementioned attributes satisfy the simulation demands and make SAGE become a generic and powerful simulation framework for CDEX experiment.
In order to achieve the challenging requirements on the CLIC vertex detector, a range of technology options have been considered in recent years. One prominent idea is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel readout chips. Recent results have shown the approach to be feasible, though more detailed studies of the performance of such devices, including simulation, are required. The CLICdp collaboration has developed a number of ASICs as part of its vertex detector R&D programme, and here we present results on the performance of a CCPDv3 active sensor glued to a CLICpix readout chip. Charge collection characteristics and tracking performance have been measured over the full expected angular range of incident particles using 120 GeV/c secondary hadron beams from the CERN SPS. Single hit efficiencies have been observed above 99% in the full range of track incidence angles, down to shallow angles. The single hit resolution has also been observed to be stable over this range, with a resolution around 6 $mu$m. The measured charge collection characterstics have been compared to simulations carried out using the Sentaurus TCAD finite-element simulation package combined with circuit simulations and parametrisations of the readout chip response. The simulations have also been successfully used to reproduce electric fields, depletion depths and the current-voltage characteristics of the device, and have been further used to make predictions about future device designs.
Transition-edge sensors (TESs) are capable of highly accurate single particle energy measurement. TESs have been used for a wide range of photon detection applications, particularly in astronomy, but very little consideration has been given to their capabilities as electron calorimeters. Existing electron spectrometers require electron filtering optics to achieve energy discrimination, but this step discards the vast majority of electrons entering the instrument. TESs require no such energy filtering, meaning they could provide orders of magnitude improvement in measurement rate. To investigate the capabilities of TESs in electron spectroscopy, a simulation pipeline has been devised. The pipeline allows the results of a simulated experiment to be compared with the actual spectrum of the incident beam, thereby allowing measurement accuracy and efficiency to be studied. Using Fisher information, the energy resolution of the simulated detectors was also calculated, allowing the intrinsic limitations of the detector to be separated from the specific data analysis method used. The simulation platform has been used to compare the performance of TESs with existing X-ray photoelectron spectroscopy (XPS) analysers. TESs cannot match the energy resolution of XPS analysers for high-precision measurements but have comparable or better resolutions for high count rate applications. The measurement rate of a typical XPS analyser can be matched by an array of 10 TESs with 120 microsecond response times and there is significant scope for improvement, without compromising energy resolution, by increasing array size.
Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا