Do you want to publish a course? Click here

Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method

99   0   0.0 ( 0 )
 Added by Zhenhua Yao
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

An improved neighbor list algorithm is proposed to reduce unnecessary interatomic distance calculations in molecular simulations. It combines the advantages of Verlet table and cell linked list algorithms by using cell decomposition approach to accelerate the neighbor list construction speed, and data sorting method to lower the CPU data cache miss rate, as well as partial updating method to minimize the unnecessary reconstruction of the neighbor list. Both serial and parallel performance of molecular dynamics simulation are evaluated using the proposed algorithm and compared with those using conventional Verlet table and cell linked list algorithms. Results show that the new algorithm outperforms the conventional algorithms by a factor of 2~3 in cases of both small and large number of atoms.



rate research

Read More

We propose a fast method for the calculation of short-range interactions in molecular dynamics simulations. The so-called random-batch list method is a stochastic version of the classical neighbor-list method to avoid the construction of a full Verlet list, which introduces two-level neighbor lists for each particle such that the neighboring particles are located in core and shell regions, respectively. Direct interactions are performed in the core region. For the shell zone, we employ a random batch of interacting particles to reduce the number of interaction pairs. The error estimate of the algorithm is provided. We investigate the Lennard-Jones fluid by molecular dynamics simulations, and show that this novel method can significantly accelerate the simulations with a factor of several fold without loss of the accuracy. This method is simple to implement, can be well combined with any linked cell methods to further speed up and scale up the simulation systems, and can be straightforwardly extended to other interactions such as Ewald short-range part, and thus it is promising for large-scale molecular dynamics simulations.
The 3D quasi-static particle-in-cell (PIC) algorithm is a very efficient method for modeling short-pulse laser or relativistic charged particle beam-plasma interactions. In this algorithm, the plasma response to a non-evolving laser or particle beam is calculated using Maxwells equations based on the quasi-static approximate equations that exclude radiation. The plasma fields are then used to advance the laser or beam forward using a large time step. The algorithm is many orders of magnitude faster than a 3D fully explicit relativistic electromagnetic PIC algorithm. It has been shown to be capable to accurately model the evolution of lasers and particle beams in a variety of scenarios. At the same time, an algorithm in which the fields, currents and Maxwell equations are decomposed into azimuthal harmonics has been shown to reduce the complexity of a 3D explicit PIC algorithm to that of a 2D algorithm when the expansion is truncated while maintaining accuracy for problems with near azimuthal symmetry. This hybrid algorithm uses a PIC description in r-z and a gridless description in $phi$. We describe a novel method that combines the quasi-static and hybrid PIC methods. This algorithm expands the fields, charge and current density into azimuthal harmonics. A set of the quasi-static field equations are derived for each harmonic. The complex amplitudes of the fields are then solved using the finite difference method. The beam and plasma particles are advanced in Cartesian coordinates using the total fields. Details on how this algorithm was implemented using a similar workflow to an existing quasi-static code, QuickPIC, are presented. The new code is called QPAD for QuickPIC with Azimuthal Decomposition. Benchmarks and comparisons between a fully 3D explicit PIC code, a full 3D quasi-static code, and the new quasi-static PIC code with azimuthal decomposition are also presented.
We present an algorithm for neighbor search in molecular simulations on graphics processing units (GPUs) based on bounding volume hierarchies (BVHs). The BVH is compressed into a low-precision, quantized representation to increase the BVH traversal speed compared to a previous implementation. We find that neighbor search using the quantized BVH is roughly two to four times faster than current state-of-the-art methods using uniform grids (cell lists) for a suite of benchmarks for common molecular simulation models. Based on the benchmark results, we recommend using the BVH instead of a single cell list for neighbor list generation in molecular simulations on GPUs.
The recently developed energy conserving semi-implicit method (ECsim) for PIC simulation is applied to multiple scale problems where the electron-scale physics needs to be only partially retained and the interest is on the macroscopic or ion-scale processes. Unlike hybrid methods, the ECsim is capable of providing kinetic electron information, such as wave-electron interaction (Landau damping or cyclotron resonance) and non-Maxwellian electron velocity distributions. However, like hybrid, the ECsim does not need to resolve all electron scales, allowing time steps and grid spacing orders of magnitude larger than in explicit PIC schemes. The additional advantage of the ECsim is that the stability at large scale is obtained while conserving energy exactly. Three examples are presented: ion acoustic waves, electron acoustic instability and reconnection processes.
Tensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency, but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating point operations. In spite of this, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations. The interatomic forces are calculated on-the-fly from an electronic structure that is obtained from a generalized deep neural network, where the computational structure naturally takes advantage of the exceptional processing power of the tensor cores and allows for high performance in excess of 100 Tflops on the tensor cores of a single Nvidia A100 GPU. Stable molecular dynamics trajectories are generated using the framework of extended Lagrangian Born-Oppenheimer molecular dynamics, which combines computational efficiency with long-term stability, even when using approximate charge relaxations and force evaluations that are limited in accuracy by the numerically noisy conditions caused by the low precision tensor core floating-point operations. A canonical ensemble simulation scheme is also presented, where the additional numerical noise in the calculated forces is absorbed into a Langevin-like dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا