No Arabic abstract
Tensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency, but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating point operations. In spite of this, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations. The interatomic forces are calculated on-the-fly from an electronic structure that is obtained from a generalized deep neural network, where the computational structure naturally takes advantage of the exceptional processing power of the tensor cores and allows for high performance in excess of 100 Tflops on the tensor cores of a single Nvidia A100 GPU. Stable molecular dynamics trajectories are generated using the framework of extended Lagrangian Born-Oppenheimer molecular dynamics, which combines computational efficiency with long-term stability, even when using approximate charge relaxations and force evaluations that are limited in accuracy by the numerically noisy conditions caused by the low precision tensor core floating-point operations. A canonical ensemble simulation scheme is also presented, where the additional numerical noise in the calculated forces is absorbed into a Langevin-like dynamics.
To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawback is the requirement of additional techniques to access time correlation functions (ring polymer MD or centroid MD). We developed an alternative technique based on a quantum thermal bath (QTB) which reduces the computation time by a factor of ~20. The QTB approach consists in a classical Langevin dynamics in which the white noise random force is replaced by a Gaussian random force having the power spectral density given by the quantum fluctuation-dissipation theorem. The method has yielded satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat capacity of a MgO crystal, and isotope effects in 7 LiH and 7 LiD. Unfortunately, the QTB is subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to combine the QTB and PIMD techniques. It requires the modification of the power spectral density of the random force within the QTB. This combination can also be seen as a way to speed up the PIMD.
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagations to WavePacket. In those simulations classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces trajectories may switch between surfaces. To model these transitions, two classes of stochastic algorithms have been implemented: (1) J. C. Tullys fewest switches surface hopping and (2) Landau-Zener based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring non-adiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.0.2 which is essentially an object-oriented rewrite of previo
We propose a fast method for the calculation of short-range interactions in molecular dynamics simulations. The so-called random-batch list method is a stochastic version of the classical neighbor-list method to avoid the construction of a full Verlet list, which introduces two-level neighbor lists for each particle such that the neighboring particles are located in core and shell regions, respectively. Direct interactions are performed in the core region. For the shell zone, we employ a random batch of interacting particles to reduce the number of interaction pairs. The error estimate of the algorithm is provided. We investigate the Lennard-Jones fluid by molecular dynamics simulations, and show that this novel method can significantly accelerate the simulations with a factor of several fold without loss of the accuracy. This method is simple to implement, can be well combined with any linked cell methods to further speed up and scale up the simulation systems, and can be straightforwardly extended to other interactions such as Ewald short-range part, and thus it is promising for large-scale molecular dynamics simulations.
We analyze and discuss convergence properties of a numerically exact algorithm tailored to study the dynamics of interacting two-dimensional lattice systems. The method is based on the application of the time-dependent variational principle in a manifold of binary and quaternary Tree Tensor Network States. The approach is found to be competitive with existing matrix product state approaches. We discuss issues related to the convergence of the method, which could be relevant to a broader set of numerical techniques used for the study of two-dimensional systems.
We have extended our recent molecular-dynamic simulations of memristors to include the effect of thermal inhomogeneities on mobile ionic species appearing during operation of the device. Simulations show a competition between an attractive short-ranged interaction between oxygen vacancies and an enhanced local temperature in creating/destroying the conducting oxygen channels. Such a competition would strongly affect the performance of the memristive devices.