Do you want to publish a course? Click here

AliEn - EDG Interoperability in ALICE

54   0   0.0 ( 0 )
 Added by Stefano Bagnasco
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and access to EDG produced data. A prototype interface has been successfully deployed using the ALICE AliEn Server and the EDG and DataTAG Testbeds.



rate research

Read More

67 - V. Adibekyan , P. Figueira , 2017
In an attempt to select stars that can host planets with characteristics similar to our own, we selected seven solar-type stars known to host planets in the habitable zone and for which spectroscopic stellar parameters are available. For these stars we estimated empirical abundances of O, C, Mg and Si, which in turn we used to derive the iron and water mass fraction of the planet building blocks with the use of the model presented in Santos et al. (2015). Our results show that if rocky planets orbit these stars they might have significantly different compositions between themselves and different from that of our Earth. However, for a meaningful comparison between the compositional properties of exoplanets in the habitable zone and our own planet, a far more sophisticated analysis (e.g. Dorn et al., 2017) of a large number of systems with precise mass and radius of planets, and accurate chemical abundances of the host stars. The work presented here is merely the first humble step in this direction.
Norm-conserving pseudopotentials are used by a significant number of electronic-structure packages, but the practical differences among codes in the handling of the associated data hinder their interoperability and make it difficult to compare their results. At the same time, existing formats lack provenance data, which makes it difficult to track and document computational workflows. To address these problems, we first propose a file format (PSML) that maps the basic concepts of the norm-conserving pseudopotential domain in a flexible form and supports the inclusion of provenance information and other important metadata. Second, we provide a software library (libPSML) that can be used by electronic structure codes to transparently extract the information in the file and adapt it to their own data structures, or to create converters for other formats. Support for the new file format has been already implemented in several pseudopotential generator programs (including ATOM and ONCVPSP), and the library has been linked with Siesta and Abinit, allowing them to work with the same pseudopotential operator (with the same local part and fully non-local projectors) thus easing the comparison of their results for the structural and electronic properties, as shown for several example systems. This methodology can be easily transferred to any other package that uses norm-conserving pseudopotentials, and offers a proof-of-concept for a general approach to interoperability.
The future of quantum repeater networking will require interoperability between various error correcting codes. A few specific code
[Abridged] To simulate the kinds of observations that will eventually be obtained for exoplanets, the Deep Impact spacecraft obtained light curves of Earth at seven wavebands spanning 300-1000 nm as part of the EPOXI mission of opportunity. In this paper we analyze disc-integrated light curves, treating Earth as if it were an exoplanet, to determine if we can detect the presence of oceans and continents. We present two observations each spanning one day, taken at gibbous phases. The rotation of the planet leads to diurnal albedo variations of 15-30%, with the largest relative changes occuring at the reddest wavelengths. To characterize these variations in an unbiased manner we carry out a principal component analysis of the multi-band light curves; this analysis reveals that 98% of the diurnal color changes of Earth are due to only 2 dominant eigencolors. We use the time-variations of these two eigencolors to construct longitudinal maps of the Earth, treating it as a non-uniform Lambert sphere. We find that the spectral and spatial distributions of the eigencolors correspond to cloud-free continents and oceans; this despite the fact that our observations were taken on days with typical cloud cover. We also find that the near-infrared wavebands are particularly useful in distinguishing between land and water. Based on this experiment we conclude that it should be possible to infer the existence of water oceans on exoplanets with time-resolved broadband observations taken by a large space-based coronagraphic telescope.
Workpackage 8 of the European Datagrid project was formed in January 2001 with representatives from the four LHC experiments, and with experiment independent people from five of the six main EDG partners. In September 2002 WP8 was strengthened by the addition of effort from BaBar and D0. The original mandate of WP8 was, following the definition of short- and long-term requirements, to port experiment software to the EDG middleware and testbed environment. A major additional activity has been testing the basic functionality and performance of this environment. This paper reviews experiences and evaluations in the areas of job submission, data management, mass storage handling, information systems and monitoring. It also comments on the problems of remote debugging, the portability of code, and scaling problems with increasing numbers of jobs, sites and nodes. Reference is made to the pioneeering work of Atlas and CMS in integrating the use of the EDG Testbed into their data challenges. A forward look is made to essential software developments within EDG and to the necessary cooperation between EDG and LCG for the LCG prototype due in mid 2003.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا