Do you want to publish a course? Click here

The BaBar Event Building and Level-3 Trigger Farm Upgrade

88   0   0.0 ( 0 )
 Added by Steffen Luitz
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The BaBar experiment is the particle detector at the PEP-II B-factory facility at the Stanford Linear Accelerator Center. During the summer shutdown 2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60 Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on the source side and a major feature extraction software speedup, this pushes the performance of the BaBar event builder and L3 filter to 5.5kHz at current background levels, almost three times the original design rate of 2kHz. For our specific application the new farm provides 8.5 times the CPU power of the old system.



rate research

Read More

122 - David Cox 2008
This proceedings describes the XFT stereo upgrade for the CDF Level 2 trigger system. Starting with the stereo finder boards, up to the XFT stereo track algorithim implementation in the Level 2 PC. This proceedings will discuss the effectiveness of the Level 2 Stereo track algorithm at achieving reduced trigger rates with high efficiencies during high luminosity running.
The LHCb experiment will operate at a luminosity of $2times10^{33}$ cm$^{-2}$s$^{-1}$ during LHC Run 3. At this rate the present readout and hardware Level-0 trigger become a limitation, especially for fully hadronic final states. In order to maintain a high signal efficiency the upgraded LHCb detector will deploy two novel concepts: a triggerless readout and a full software trigger.
In order to achieve the data rates proposed for the future Run 3 upgrade of the LHCb detector, new processing models must be developed to deal with the increased throughput. For this reason, we aim to investigate the feasibility of purely data-driven holistic methods, with the constraint of introducing minimal computational overhead, hence using only raw detector information. These filters should be unbiased - having a neutral effect with respect to the studied physics channels. In particular, the use of machine learning based methods seems particularly suitable, potentially providing a natural formulation for heuristic-free, unbiased filters whose objective would be to optimize between throughput and bandwidth.
The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.
A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا