Do you want to publish a course? Click here

Isotopic dependence of fusion cross sections in reactions with heavy nuclei

69   0   0.0 ( 0 )
 Added by Gurgen Adamian
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The dependence of fusion cross section on the isotopic composition of colliding nuclei is analysed within the dinuclear system concept for compound nucleus formation. Probabilities of fusion and surviving probabilities, ingredients of the evaporation residue cross sections, depend decisively on the neutron numbers of the dinuclear system. Evaporation residue cross sections for the production of actinides and superheavy nuclei, listed in table form, are discussed and compared with existing experimental data. Neutron-rich radioactive projectiles are shown to lead to similar fusion cross sections as stable projectiles.



rate research

Read More

458 - Ning Wang , Li Ou , Yingxun Zhang 2014
The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L approx 78$ MeV and the surface energy coefficient is $g_{rm sur}=18pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.
175 - Wenfei Li , Nan Wang , Fei Jia 2005
Within the dinuclear system (DNS) conception, instead of solving Fokker-Planck Equation (FPE) analytically, the Master equation is solved numerically to calculate the fusion probability of super-heavy nuclei, so that the harmonic oscillator approximation to the potential energy of the DNS is avoided. The relative motion concerning the energy, the angular momentum, and the fragment deformation relaxations is explicitly treated to couple with the diffusion process, so that the nucleon transition probabilities, which are derived microscopically, are time-dependent. Comparing with the analytical solution of FPE, our results preserve more dynamical effects. The calculated evaporation residue cross sections for one-neutron emission channel of Pb-based reactions are basically in agreement with the known experimental data within one order of magnitude.
317 - S. Quaglioni 2012
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
244 - C. Rizzo , V. Baran , M. Colonna 2010
We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We will focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The evolution of the system is described by a Stochastic Mean Field transport equation (SMF), where two parametrizations for the density dependence of symmetry energy (Asysoft and Asystiff) are implemented, allowing one to explore the sensitivity of the results to this ingredient of the nuclear interaction. The method described here, based on the event by event evolution of phase space quadrupole collective modes will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, in the Asysoft choice. Finally a collective charge equilibration mechanism (the Dynamical Dipole) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [2] is further extended in the realm of random matrices. The case of reactions with the projectile and the target being two-cluster nuclei is also analyzed and applications are made for scattering from a deuteron target [3]. An extension of the theory to a three-cluster projectile incident on a two-cluster target is also discussed. The theoretical developments described here should open new possibilities to obtain information on the neutron capture cross sections of radioactive nuclei using indirect methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا